Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T20:37:44.086Z Has data issue: false hasContentIssue false

Microstructure and electronic behavior of PtPd@Pt core-shell nanowires

Published online by Cambridge University Press:  31 January 2011

Dong Su
Affiliation:
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, New York 11973
Tsun-Kong Sham
Affiliation:
Department of Chemistry, University of Western Ontario, London, Ontario, N6A 5B7 Canada
Yimei Zhu
Affiliation:
Condensed Matter Physics and Materials Science Department, Brookhaven National Laboratory, Upton, New York 11973
Yongfeng Hu
Affiliation:
Canadian Light Source, University of Saskatchewan, Saskatoon, Saskatchewan, S7N 0X4 Canada
Toshihiro Aoki
Affiliation:
JEOL USA, Inc., Peabody, Massachusetts 01961
Get access

Abstract

PtPd@Pt core-shell ultrathin nanowires were prepared using a one-step phase-transfer approach. The diameters of the nanowires range from 2 to 3 nm, and their lengths are up to hundreds of nanometers. Line scanning electron energy loss spectra showed that PtPd bimetallic nanowires have a core-shell structure, with a PtPd alloy core and a Pt monolayer shell. X-ray absorption near edge structure (XANES) spectra reveal that a strong Pt-Pd interaction exists in this nanowire system in that there is PtPd alloying and/or interfacial interaction. Extended x-ray absorption fine structures (EXAFS) further confirms the PtPd@Pt core-shell structure. The bimetallic nanowires were determined to be face-centered cubic structures. The long-chain organic molecules of n-dodecyl trimethylammonium bromide and octadecylamine, used as surfactants during synthesis, were clearly observed using aberration-corrected TEM operated at 80 KV. The interaction of Pt and surfactants was also revealed by EXAFS.

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Habas, S., Lee, H., Radmilovic, V., Somorjai, G.A., Yang, P.D.Shaping binary metal nanocrystals through epitaxial seeded growth. Nat. Mater. 6, 692 (2007)CrossRefGoogle ScholarPubMed
2.Schaak, R.E., Sra, A.K., Leonard, B.M., Cable, R.E., Bauer, J.C., Han, Y.F., Means, J., Teizer, W., Vasquez, Y., Funck, E.S.Metallurgy in a beaker: Nanoparticle toolkit for the rapid low-temperature solution synthesis of functional multimetallic solid-state materials. J. Am. Chem. Soc. 127, 3506 (2005)CrossRefGoogle Scholar
3.Song, Y., Garcia, R.M., Dorin, R.M., Wang, H., Qiu, Y., Coker, E.N., Steen, W.A., Miller, J.E., Shelnutt, A.Synthesis of platinum nanowire networks using a soft template. Nano Lett. 7, 3650 (2007)CrossRefGoogle ScholarPubMed
4.Chen, Z.W., Waje, M., Li, W., Yan, Y.Supportless Pt and PtPd nanotubes as electrocatalysts for oxygen-reduction reactions. Angew. Chem. Int. Ed. 46, 4060 (2007)CrossRefGoogle ScholarPubMed
5.Xiong, Y., Xia, Y.N.Shape-controlled synthesis of metal nanostructures: The case of palladium. Adv. Mater. 19, 3385 (2007)CrossRefGoogle Scholar
6.Ye, H., Crooks, R.M.Effect of elemental composition of PtPd bimetallic nanoparticles containing an average of 180 atoms on the kinetics of the electrochemical oxygen reduction reaction. J. Am. Chem. Soc. 129, 3627 (2007)CrossRefGoogle ScholarPubMed
7.Teng, X., Han, W.Q., Ku, W., Hücker, M.Synthesis of ultrathin palladium and platinum nanowires and a study of their magnetic properties. Angew. Chem. Int. Ed. 47, 2055 (2008)CrossRefGoogle Scholar
8.Sun, S., Yang, D., Villers, D., Zhang, G., Sacher, E., Dodelet, J.P.Template- and surfactant-free room temperature synthesis of self-assembled 3D Pt nanoflowers from single-crystal nanowires. Adv. Mater. 20, 571 (2008)CrossRefGoogle Scholar
9.Teng, X., Wang, Q., Liu, P., Han, W.Q., Frenkel, A.I., Wen, W., Hanson, J.C., Rodriguez, J.A.Hybrid Pt/Au nanowires: Synthesis and electronic structure, formation of Pd/Au nanostructures from Pd nanowires via galvanic replacement reaction. J. Am. Chem. Soc. 130, 1093 (2008)CrossRefGoogle Scholar
10.Wang, L., Yamauchi, Y.Block copolymer mediated synthesis of dendritic platinum nanoparticles. J. Am. Chem. Soc. 131, 9152 (2009)CrossRefGoogle ScholarPubMed
11.Liang, H.W., Liu, S., Gong, J.Y., Wang, S.B., Wang, L., Yu, S.H.Blockade of inducible costimulator pathway to prevent acute rejection in rat liver transplantation. Adv. Mater. 21, 1850 (2009)CrossRefGoogle Scholar
12.Teng, X.W., Feygenson, M., Wang, Q., He, J.Q., Du, W.X., Frenkel, A.I., Han, W.Q., Arenson, M.Electronic and magnetic properties of ultrathin Au/Pt nanowires. Nano Lett. 9, 3177 (2009)CrossRefGoogle ScholarPubMed
13.Tao, F., Grass, M.E., Zhang, Y., Butcher, D.R., Renzas, J.R., Liu, Z.J., Chung, Y., Bongjin, S.M., Salmeron, M., Somojai, G.A.Reaction-driven restructuring of Rh-Pd and Pt-Pd core-shell nanoparticles. Science 322, 932 (2008)CrossRefGoogle ScholarPubMed
14.Kobayashi, H., Yamauchi, M., Kitagawa, H., Kubota, Y., Kato, K., Takata, M.Hydrogen absorption in the core/shell interface of Pd/Pt nanoparticles. J. Am. Chem. Soc. 130, 1818 (2008)CrossRefGoogle ScholarPubMed
15.Sanchez, S.I., Small, M.W., Zhou, J.M., Nuzzo, R.G.Structural characterization of Pt-Pd and Pd-Pt core-shell nanoclusters at atomic resolution. J. Am. Chem. Soc. 131, 8683 (2009)CrossRefGoogle ScholarPubMed
16.Lim, B., Jiang, M., Camargo, P.H.C., Cho, E.C., Tao, J., Lu, X., Zhu, Y., Xia, Y.N.Pd-Pt bimetallic nanodendrites with high activity for oxygen reduction. Science 324, 1302 (2009)CrossRefGoogle ScholarPubMed
17.Peng, Z., Yang, H.Synthesis and oxygen reduction electrocatalytic property of Pt-on-Pd bimetallic heteronanostructures. J. Am. Chem. Soc. 131, 7542 (2009)CrossRefGoogle ScholarPubMed
18.Yuan, Q., Zhuang, J., Huang, X.Single-phase aqueous approach toward Pd sub-10 nm nanocubes and Pd–Pt heterostructured ultrathin nanowires. Chem. Commun. 6613 (2009)CrossRefGoogle ScholarPubMed
19.Inada, H., Wu, L.J., Wall, J., Su, D., Zhu, Y.M.Performance and image analysis of the aberration-corrected Hitachi HD-2700C STEM. J. Electron Microsc. 58, 111 (2009)CrossRefGoogle ScholarPubMed
20.Rehr, J.J., Alberts, R.C.Theoretical approaches to x-ray absorption fine structure. Rev. Mod. Phys. 72, 621 (2000)CrossRefGoogle Scholar
21.Warren, B.E.X-ray Diffraction (Dover, Mineola, NY 1990)Google Scholar
22.Moysan, I., Paul-Boncour, V., Thiebaut, S., Sciora, E., Fournier, J.M., Cortes, R., Bourgeois, S., Percheron-Guegan, A.Pd-Pt alloys: Correlation between electronic structure and hydrogenation properties. J. Alloys Compd. 322, 14 (2001)CrossRefGoogle Scholar
23.Wu, L., Wiesmann, H.J., Moodenbaugh, A.R., Klie, R.F., Zhu, Y., Welch, D.O., Suenaga, M.Oxidation state and lattice expansion of CeO2–x nanoparticles as a function of particle size. Phys. Rev. B 69, 125415 (2004)CrossRefGoogle Scholar
24.Han, W.Q., Wu, L., Zhu, Y.Formation and oxidation state of CeO2–x nanotubes. J. Am. Chem. Soc. 127, 12814 (2005)CrossRefGoogle Scholar
25.Spence, J.C.H.Absorption spectroscopy with sub-Ångstrom beams: ELS in STEM. Rep. Prog. Phys. 69, 725 (2006)CrossRefGoogle Scholar
26.Egerton, R.F.Electron Energy-Loss Spectroscopy in the Electron Microscope 2nd ed. (Plenum, New York 1996)CrossRefGoogle Scholar
27.Teo, B.K., Klee, P.A.Abinitio calculations of amplitude and phase functions for extended x-ray absorption fine-structure spectroscopy. J. Am. Chem. Soc. 102, 2851 (1979)Google Scholar
28.Coulthard, I., Sham, T.K.Novel preparation of noble metal nanostructures utilizing porous silicon. Solid State Commun. 105, 751 (1998)CrossRefGoogle Scholar
29.Zhang, P., Sham, T.K.X-ray studies of the structure and electronic behavior of alkanethiolate-capped gold nanoparticles: The interplay of size and surface effects. Phys. Rev. Lett. 90, 245502 (2003)CrossRefGoogle ScholarPubMed
30.Coulthard, I., Sammynaiken, R., Naftel, S.J., Zhang, P., Sham, T.K.Porous silicon: A template for the preparation of nanophase metals and bimetallic aggregates. Phys. Status Solidi 181, 157 (2000)3.0.CO;2-O>CrossRefGoogle Scholar
31.Coulthard, I., Sham, T.K.Charge redistribution in Pd-Ag alloys from a local perspective. Phys. Rev. Lett. 77, 4824 (1996)CrossRefGoogle ScholarPubMed
32.Stamenkovic, V.R., Mun, B.S., Mayrhofer, K.J.J., Ross, P.N., Markovic, N.J.Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces. Am. Chem. Soc. 128, 8813 (2006)CrossRefGoogle ScholarPubMed
33.Toshima, N., Harada, M., Yonezawa, T., Kushihashi, K., Asakura, K.Structural-analysis of polymer-protected Pd/Pt bimetallic cluster as dispersed catalysts by using extended x-ray absorption fine-structure spectroscopy. J. Phys. Chem. 95, 7448 (1991)CrossRefGoogle Scholar
34.Hansen, P.L., Molenbroek, A.M., Ruban, A.V.Alloy formation and surface segregation in zeolite-supported Pt-Pd bimetallic catalysts. J. Phys. Chem. B 101, 1861 (1997)CrossRefGoogle Scholar
35.van den Oetelarr, L.C.A., Nooij, O.W., Oerlemans, S., van der Gon, A.W.D., Brongersma, H.H., Lefferts, L., Roosenbrand, A.G., van Veen, J.A.R.Alloy formation and surface segregation in zeolite-supported Pt-Pd bimetallic catalysts. J. Phys. Chem. B 102, 3445 (1997)CrossRefGoogle Scholar
36.Ma, Y., Balbuena, P.B.Pt surface segregation in bimetallic Pt3M alloys: A density-functional theory study. Surf. Sci. 602, 107 (2008)CrossRefGoogle Scholar