Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-28T09:51:50.704Z Has data issue: false hasContentIssue false

Microdrop generation and deposition of ionic liquids

Published online by Cambridge University Press:  22 July 2014

Víctor J. Cadarso*
Affiliation:
Microsystem Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
Julia Perera-Nuñez
Affiliation:
Department of Applied Physics, University of Extremadura, Badajoz 06071, Spain
Antonio Mendez-Vilas
Affiliation:
Department of Applied Physics, University of Extremadura, Badajoz 06071, Spain
Luis Labajos-Broncano
Affiliation:
Department of Applied Physics, University of Extremadura, Badajoz 06071, Spain; and Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz 06071, Spain
Maria-Luisa González-Martín
Affiliation:
Department of Applied Physics, University of Extremadura, Badajoz 06071, Spain; and Networking Research Center of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Badajoz 06071, Spain
Jürgen Brugger*
Affiliation:
Microsystem Laboratory, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland
*
a)Address all correspondence to these authors. e-mail: [email protected]
Get access

Abstract

This work describes the use of a piezo-actuated inkjet print head with a nozzle aperture of 50 µm to obtain picoliter drops of different model ionic liquids (ILs). A theoretical analysis of the microdrop generation of three model ILs is confirmed by experiments. The inkjet print process was optimized to enable a stable and reproducible drop ejection in both continuous and drop-on-demand modes by controlling the temperature of the nozzle, as well as the electrical signal sent to the piezo actuator used to generate the drops. Controlled volumes ranging from 43 ± 3 pL to 319 ± 1 pL have been achieved, with a volume control down to 3 pL. The null volatility of ILs yields an extremely high stability of the inkjet process, obtaining drops with very constant volumes during the entire print process. It also avoids the coffee staining effect observed in the deposition of conventional liquid drops. The possibility to deposit controlled volumes in a reproducible way is demonstrated here and applied to a proof-of-concept application with the aim to create dense concave optical lens arrays by replicating the deposited ionic liquid microdrops in poly(dimethylsiloxane) (PDMS).

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Plechkova, N.V. and Seddon, K.R.: Applications of ionic liquids in the chemical industry. Chem. Soc. Rev. 37(1), 123 (2008).CrossRefGoogle ScholarPubMed
Rogers, R.D. and Seddon, K.R.: Ionic liquids – Solvents of the future? Science 302(5646), 792 (2003).Google Scholar
Weingärtner, H.: Understanding ionic liquids at the molecular level: Facts, problems, and controversies. Angew. Chem., Int. Ed. 47(4), 654 (2008).Google Scholar
Seddon, K.R.: Ionic liquids for clean technology J. Chem. Technol. Biotechnol. 68(4), 351 (1997).Google Scholar
Wasserscheid, P. and Keim, W.: Ionic liquids – New ‘solutions’ for transition metal catalysis. Angew. Chem., Int. Ed. 39(21), 3773 (2000).3.0.CO;2-5>CrossRefGoogle ScholarPubMed
Torimoto, T., Tsuda, T., Okazaki, K.I., and Kuwabata, S.: New frontiers in materials science opened by ionic liquids. Adv. Mater. 22(11), 1196 (2010).Google Scholar
Borra, E.F., Seddiki, O., Angel, R., Eisenstein, D., Hickson, P., Seddon, K.R., and Worden, S.P.: Deposition of metal films on an ionic liquid as a basis for a lunar telescope. Nature 447(7147), 979 (2007).CrossRefGoogle Scholar
Grätzel, M.: Dye-sensitized solar cells. J. Photochem. Photobiol., C 4(2), 145 (2003).CrossRefGoogle Scholar
Trang Pham, T.T., Bessho, T., Mathews, N., Zakeeruddin, S.M., Lam, Y.M., Mhaisalkar, S., and Grätzel, M.: Light scattering enhancement from sub-micrometer cavities in the photoanode for dye-sensitized solar cells. J. Mater. Chem. 22(32), 16201 (2012).CrossRefGoogle Scholar
Rutten, F.J.M., Tadesse, H., and Licence, P.: Rewritable imaging on the surface of frozen ionic liquids. Angew. Chem., Int. Ed. 46(22), 4163 (2007).Google Scholar
Bermúdez, M.D., Jiménez, A.E., Sanes, J., and Carrión, F.J.: Ionic liquids as advanced lubricant fluids. Molecules 14(8), 2888 (2009).CrossRefGoogle ScholarPubMed
Kim, G.T., Jeong, S.S., Xue, M.Z., Balducci, A., Winter, M., Passerini, S., Alessandrini, F., and Appetecchi, G.B.: Development of ionic liquid-based lithium battery prototypes. J. Power Sources 199, 239 (2012).Google Scholar
Liu, N., Chen, X., and Ma, Z.: Ionic liquid functionalized graphene/Au nanocomposites and its application for electrochemical immunosensor. Biosens. Bioelectron. 48, 33 (2013).CrossRefGoogle ScholarPubMed
Tordera, D., Meier, S., Lenes, M., Costa, R.D., Ortí, E., Sarfert, W., and Bolink, H.J.: Simple, fast, bright, and stable light sources. Adv. Mater. 24(7), 897 (2012).Google Scholar
Tsuchitani, S., Takagi, N., Kikuchi, K., and Miki, H.: Chemical propulsion using ionic liquids. Langmuir 29(9), 2799 (2013).CrossRefGoogle ScholarPubMed
Hozumi, A., Bien, P., and McCarthy, T.J.: Ionic liquids: Nondestructive, nonvolatile imaging fluids for submicrometer-scale monolayer patterns. J. Am. Chem. Soc. 132(16), 5602 (2010).CrossRefGoogle ScholarPubMed
Dubois, P., Marchand, G., Fouillet, Y., Berthier, J., Douki, T., Hassine, F., Gmouh, S., and Vaultier, M.: Ionic liquid droplet as e-microreactor. Anal. Chem. 78(14), 4909 (2006).Google Scholar
Perera-Núñez, J., Méndez-Vilas, A., Labajos-Broncano, L., and González-Martín, M.L.: Ionic liquid microdroplets as versatile lithographic molds for sculpting curved topographies on soft materials surfaces. Langmuir 26(22), 17712 (2010).CrossRefGoogle ScholarPubMed
Gao, L. and McCarthy, T.J.: Ionic liquids are useful contact angle probe fluids. J. Am. Chem. Soc. 129(13), 3804 (2007).Google Scholar
Palacio, M. and Bhushan, B.: Ultrathin wear-resistant ionic liquid films for novel MEMS/NEMS applications. Adv. Mater. 20(6), 1194 (2008).CrossRefGoogle Scholar
Pu, J., Wan, S., Zhao, W., Mo, Y., Zhang, X., Wang, L., and Xue, Q.: Preparation and tribological study of functionalized graphene-IL nanocomposite ultrathin lubrication films on Si substrates. J. Phys. Chem. C 115(27), 13275 (2011).Google Scholar
Inaba, A., Yoo, G., Takei, Y., Matsumoto, K., and Shimoyama, I.: A Graphene FET Gas Sensor Gated by Ionic Liquid: Proceedings of the IEEE 26th International Conference on Micro Electro Mechanical Systems (Taipei, Taiwan, 2013); p. 969.Google Scholar
Mu, X., Wang, Z., Guo, M., Zeng, X., and Mason, A.J.: Fabrication of a Miniaturized Room Temperature Ionic Liquid Gas Sensor for Human Health and Safety Monitoring: Proceedings of the IEEE Biomedical Circuits and Systems Conference: Intelligent Biomedical Electronics and Systems for Better Life and Better Environment (Hsinchu, Taiwan, 2012); p. 140.Google Scholar
Mu, X., Wang, Z., Zeng, X., and Mason, A.J.: A robust flexible electrochemical gas sensor using room temperature ionic liquid. IEEE Sens. J. 13(10), 3976 (2013).Google Scholar
Ohsawa, K., Takahashi, H., Noda, K., Kan, T., Matsumoto, K., and Shimoyama, I.: A Gas Sensor Based on Viscosity Change of Ionic Liquid: Proceedings of the 24th IEEE International Conference on Micro Electro Mechanical Systems (Cancun, Mexico, 2011); p. 525.Google Scholar
Kaisei, K., Kobayashi, K., Matsushige, K., and Yamada, H.: Fabrication of ionic liquid thin film by nano-inkjet printing method using atomic force microscope cantilever tip. Ultramicroscopy 110(6), 733 (2010).Google Scholar
Delaney, J.T. Jr., Liberski, A.R., Perelaer, J., and Schubert, U.S.: A practical approach to the development of inkjet printable functional ionogels – bendable, foldable, transparent, and conductive electrode materials. Macromol. Rapid Commun. 31(22), 1970 (2010).Google Scholar
Löffelmann, U., Wang, N., Mager, D., Smith, P.J., and Korvink, J.G.: Solvent-free inkjet printing process for the fabrication of conductive, transparent, and flexible ionic liquid-polymer gel structures. J. Polym. Sci., Part B: Polym. Phys. 50(1), 38 (2012).Google Scholar
Cadarso, V.J., Perera-Núñez, J., Jacot-Descombes, L., Pfeiffer, K., Ostrzinski, U., Voigt, A., Llobera, A., Grützer, G., and Brugger, J.: Microlenses with defined contour shapes. Opt. Express 19(19), 18665 (2011).CrossRefGoogle ScholarPubMed
Cadarso, V.J., Smolik, G., Auzelyte, V., Jacot-Descombes, L., and Brugger, J.: Heterogeneous material micro-transfer by ink-jet print assisted mould filling. Microelectron. Eng. 98, 619 (2012).Google Scholar
De Gans, B.J., Duineveld, P.C., and Schubert, U.S.: Inkjet printing of polymers: State of the art and future developments. Adv. Mater. 16(3), 203 (2004).Google Scholar
Wijshoff, H.: The dynamics of the piezo inkjet printhead operation. Phys. Rep. 491(4–5), 77 (2010).Google Scholar
Thomas, G.O.: The aerodynamic breakup of ligaments. Atomization Sprays 13(1), 117 (2003).Google Scholar
Liu, Y.F., Tsai, M.H., Pai, Y.F., and Hwang, W.S.: Control of droplet formation by operating waveform for inks with various viscosities in piezoelectric inkjet printing. Appl. Phys. A: Mater. Sci. Process. 111(2), 509 (2013).Google Scholar
Derby, B.: Inkjet printing ceramics: From drops to solid. J. Eur. Ceram. Soc. 31(14), 2543 (2011).CrossRefGoogle Scholar
Fromm, J.E.: Numerical calculation of the fluid dynamics of drop-on-demand jets IBM. J. Res. Dev. 28(3), 322 (1984).Google Scholar
Reis, N., Ainsley, C., and Derby, B.: Ink-jet delivery of particle suspensions by piezoelectric droplet ejectors. J. Appl. Phys. 97(9), (2005).CrossRefGoogle Scholar
Jacquemin, J., Husson, P., Padua, A.A.H., and Majer, V.: Density and viscosity of several pure and water-saturated ionic liquids. Green Chem. 8(2), 172 (2006).CrossRefGoogle Scholar
Freire, M.G., Carvalho, P.J., Fernandes, A.M., Marrucho, I.M., Queimada, A.J., and Coutinho, J.A.P.: Surface tensions of imidazolium based ionic liquids: Anion, cation, temperature and water effect. J. Colloid Interface Sci. 314(2), 621 (2007).CrossRefGoogle ScholarPubMed
Pereiro, A.B., Verdía, P., Tojo, E., and Rodríguez, A.: Physical properties of 1-butyl-3-methylimidazolium methyl sulfate as a function of temperature. J. Chem. Eng. Data 52(2), 377 (2007).Google Scholar