Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-24T16:43:20.988Z Has data issue: false hasContentIssue false

Mg-rich Mg–Ni–Gd ternary bulk metallic glasses with high compressive specific strength and ductility

Published online by Cambridge University Press:  03 March 2011

E.S. Park
Affiliation:
Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120–749 Korea
H.J. Chang
Affiliation:
Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120–749 Korea
D.H. Kim*
Affiliation:
Center for Non-crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120–749 Korea
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In the present study, we show by tailoring the combinations of the bonding energy among the elements in the liquid state, glass forming ability and compressive mechanical properties of the metallic glasses (MGs) can be improved. The mixing enthalpy values for binary atom pairs in the ternary Mg–Ni–Gd alloys (Mg–Ni: −12 kJ/mol, Mg–Gd: −27 kJ/mol, Ni–Gd: −161 kJ/mol) covers a wide range, although they are all negative. Mg-rich Mg–Ni–Gd (Mg > 70 at.%) alloys can be readily solidified into an amorphous state in a wide composition range up to 4 mm in diameter using the injection casting method; they exhibit the highest level of glass transition temperature Tg among those reported in Mg-based MGs so far. In particular, Mg-rich Mg–Ni–Gd bulk metallic glasses with 10–15 at.% Ni and 10–15 at.% Gd exhibit high strength over 900 MPa and large plastic strain up to ∼2% during compressive loading.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Inoue, A., Kato, A., Zhang, T., Kim, S.G., and Masumoto, T.: Mg–Cu–Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method. Mater. Trans., JIM 32, 609 (1991).CrossRefGoogle Scholar
2Kang, H.G., Park, E.S., Kim, W.T., Kim, D.H., and Cho, H.K.: Fabrication of bulk Mg–Cu–Ag–Y glassy alloy by squeeze casting. Mater. Trans., JIM 41, 846 (2000).CrossRefGoogle Scholar
3Men, H. and Kim, D.H.: Fabrication of ternary Mg–Cu–Gd bulk metallic glass with high glass-forming ability under air atmosphere. J. Mater. Res. 18, 1502 (2003).CrossRefGoogle Scholar
4Park, E.S. and Kim, D.H.: Formation of Mg–Cu–Ni–Ag–Zn–Y–Gd bulk glassy alloy by casting into cone-shaped copper mold in air atmosphere. J. Mater. Res. 20, 1465 (2005).CrossRefGoogle Scholar
5Ma, H., Shi, L.L., Xu, J., Li, Y., and Ma, E.: Discovering inch-diameter metallic glasses in thress-dimensional composition space. Appl. Phys. Lett. 87, 181915 (2005).CrossRefGoogle Scholar
6Li, Y., Ng, S.C., and Ong, C.K.: New amorphous alloys with high strength and good bend ductility in the Mg–Ni–Nd system. J. Mater. Proc. Technol. 48, 489 (1995).CrossRefGoogle Scholar
7Wei, Y.X., Xi, X.K., Zhao, D.Q., Pan, M.X., and Wang, W.H.: Formation of MgNiPr bulk metallic glasses in air. Mater. Lett. 59, 945 (2005).CrossRefGoogle Scholar
8Gu, X., Shiflet, G.J., Guo, F.Q., and Poon, S.J.: Mg–Ca–Zn bulk metallic glasses with high strength and significant ductility. J. Mater. Res. 20, 1935 (2005).CrossRefGoogle Scholar
9Ma, H., Xu, J., and Ma, E.: Mg-based bulk metallic glass composites with plasticity and high strength. Appl. Phys. Lett. 83, 2793 (2003).CrossRefGoogle Scholar
10Xu, Y.K., Ma, H., Xu, J., and Ma, E.: Mg-based bulk metallic glass composites with plasticity and gigapascal strength. Acta Mater. 53, 1857 (2005).CrossRefGoogle Scholar
11Xing, L.-Q., Li, Y., Ramesh, K.T., Li, J., and Hufnagel, T.C.: Enhanced plastic strain in Zr-based bulk amorphous alloys. Phys. Rev. B 64 180201 (R) (2001).CrossRefGoogle Scholar
12Park, E.S., Lee, J.Y., and Kim, D.H.: Effect of Ag addition on the improvement of glass-forming ability and plasticity of Mg–Cu–Gd bulk metallic glass. J. Mater. Res. 20, 2379 (2005).CrossRefGoogle Scholar
13Oh, J.C., Ohkubo, T., Kim, Y.C., Fleury, E., and Hono, K.: Phase separation in Cu43Zr43Al7Ag7 bulk metallic glass. Scripta Mater. 53, 165 (2005).CrossRefGoogle Scholar
14Park, E.S., Chang, H.J., Kim, D.H., Ohkubo, T., and Hono, K.: Effect of substitution of Ag and Ni for Cu on the glass forming ability and plasticity of Cu60Zr30Ti10 alloy. Scripta Mater. 54, 1569 (2006).CrossRefGoogle Scholar
15Park, E.S. and Kim, D.H.: Phase separation and enhancement of plasticity in Cu–Zr–Al–Y bulk metallic glasses. Acta Mater. 54, 2597 (2006).CrossRefGoogle Scholar
16Li, Y., Ng, S.C., Ong, C.K., Hng, H.H., and Jones, H.: Critical cooling rates of glass formation in Mg-based Mg–Ni–Nd alloys. J. Mater. Sci. Lett. 14, 988 (1995).CrossRefGoogle Scholar
17Inoue, A., Negishi, T., Kimura, H.M., Zhang, T., and Yavari, R.: High packing density of Zr- and Pd-based bulk amorphous alloys. Mater. Trans. JIM 39, 318 (1998).CrossRefGoogle Scholar
18Neite, G., Kubota, K., Higashi, K., and Hehmann, F.: Structure and Properties in Nonferrous Alloys, Vol. 8, in Materials Science and Technology, edited by Matucha, K.H. (Wiley, New York, 1996), pp. 152156.Google Scholar
19Miedema, A.R., deboer, F.R., and Boom, R.: Enthalpy of formation of transition metal alloys. Calphad 1, 341 (1977).CrossRefGoogle Scholar
20Angell, C.A.: Formation of glasses from liquids and biopolymers. Science 267, 1924 (1995).CrossRefGoogle ScholarPubMed
21Busch, R., Liu, W., and Johnson, W.L.: Thermodynamics and kinetics of the Mg65Cu25Y10 bulk metallic glass forming liquid. J. Appl. Phys. 83, 4134 (1998).CrossRefGoogle Scholar
22Novikov, V.N. and Sokolov, A.P.: Poisson’s ratio and the fragility of glass-forming liquids. Nature 431, 961 (2004).CrossRefGoogle ScholarPubMed
23Schroers, J. and Johnson, W.L.: Ductile bulk metallic glasses. Phys. Rev. Lett. 93, 255506 (2004).CrossRefGoogle Scholar
24Gebert, A., Khorkounov, B., Wolff, U., Mickel, Ch., Uhlemann, M., and Schultz, L.: Stability of rapidly quenched and hydrogenated Mg–Ni–Y ad Mg–Cu–Y alloys in extreme alkaline medium. J. Alloys Compd. 419, 319 (2006).CrossRefGoogle Scholar