Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-05T06:36:58.589Z Has data issue: false hasContentIssue false

Mechanical response of human red blood cells in health and disease: Some structure-property-function relationships

Published online by Cambridge University Press:  01 August 2006

S. Suresh*
Affiliation:
Department of Materials Science and Engineering, Division of Biological Engineering, and Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Aspects of mechanical deformability and biorheology of the human red blood cell are known to play a pivotal role in influencing organ function as well as states of overall health and disease. In this article, consequences of alterations to the membrane and cytoskeletal molecular structure of the human red blood cell are considered in the context of an infectious disease, Plasmodium falciparum malaria, and several hereditary hemolytic disorders: spherocytosis, elliptocytosis, and sickle cell anemia. In each of these cases, the effects of altered cell shape or molecular structure on cell elasticity, motility, and biorheology are examined. These examples are used to gain broad perspectives on the connections among cell and subcellular structure, properties, and disease at the intersections of engineering, biology, and medicine.

Type
Reviews
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Suresh, S., Spatz, J., Mills, J.P., Micoulet, A., Dao, M., Lim, C.T., Beil, M., Seufferlein, T.: Single-cell biomechanics and human disease states: Gastrointestinal cancer and malaria. Acta Biomater. 1, 16 (2005).Google Scholar
2.Bao, G., Suresh, S.: Cell and molecular mechanics of biological materials. Nat. Mater. 2, 715 (2003).CrossRefGoogle ScholarPubMed
3.Ingber, D.E.: Mechanical signaling and the cellular response to extracellular matrix in angiogenesis and cardiovascular physiology. Circ. Res. 91, 877 (2002).CrossRefGoogle ScholarPubMed
4.Boal, D.: Mechanics of the Cell (Cambridge University Press, Cambridge, UK, 2002).Google Scholar
5.Cooke, B.M., Mohandas, N., Coppel, R.L.: Malaria and the red blood cell membrane. Semin. Hematol. 41, 173 (2004).CrossRefGoogle ScholarPubMed
6.Miller, L.H., Baruch, D.I., Marsh, K., Doumbo, O.K.: Pathogenic basis of malaria. Nature 415, 673 (2002).CrossRefGoogle ScholarPubMed
7.Cooke, B.M., Mohandas, N., Coppel, R.L.: The malaria-infected red blood cell: Structural and functional changes. Adv. Parasitol. 50, 1 (2001).Google Scholar
8.Bannister, L.H., Hopkins, J.M., Fowler, R.E., Krishna, S., Mitchell, G.H.: A brief illustrated guide to the ultrastructure of Plasmodium falciparum asexual blood stages. Parasitol. Today 16, 427 (2000).CrossRefGoogle Scholar
9.Van Vliet, K.J., Bao, G., Suresh, S.: The biomechanics toolbox: Experimental approaches for living cells and biomolecules. Acta Mater. 51, 5881 (2003).Google Scholar
10.Evans, A.: Bending elastic modulus of red blood cell membrane derived from buckling instability in micropipette aspiration tests. Biophys. J. 43, 27 (1983).CrossRefGoogle ScholarPubMed
11.Glenister, F.K., Coppel, R.L., Cowman, A.F., Mohandas, N., Cooke, B.M.: Contribution of parasite proteins to altered mechanical properties of malaria-infected red blood cells. Blood 99, 1060 (2002).CrossRefGoogle ScholarPubMed
12.Ashkin, A., Dziedzic, J.M., Bjorkholm, J.E., Chu, S.: Observation of single beam gradient force optical trap for dielectric particles. Opt. Lett. 11, 288 (1986).Google Scholar
13.Henon, S., Lenormand, G., Richert, A., Gallet, F.: A new determination of the shear modulus of the human erythrocyte membrane using optical tweezers. Biophys. J. 76, 1145 (1999).CrossRefGoogle ScholarPubMed
14.Dao, M., Lim, C.T., Suresh, S.: Mechanics of the human red blood cell deformed by optical tweezers. J. Mech. Phys. Solids 51, 2259 (2003).CrossRefGoogle Scholar
15.Mills, J.P., Qie, L., Dao, M., Lim, C.T., Suresh, S.: Nonlinear elastic and viscoelastic deformation of the human red blood cell with optical tweezers. Mech. Chem. Biosyst. 1, 169 (2004).Google ScholarPubMed
16.Shelby, J.P., White, J., Ganesan, K., Rathod, P.K., Chiu, D.T.: A microfluidic model for single-cell capillary obstruction by Plasmodium falciparum-infected erythrocytes. Proc. Natl. Acad. Sci. USA 100, 14618 (2003).CrossRefGoogle ScholarPubMed
17.Lim, C.T., Suresh, S. (unpublished research), National University of Singapore and Massachusetts Institute of Technology (2006).Google Scholar
18.Suwanarusk, R., Cooke, B.M., Dandorp, A.M., Silamut, K., Sttabongkot, J., White, N.J.: The deformability of red blood cells parasitized by Plasmodium falciparum and P. vivax. J. Infect. Dis. 189, 190 (2004).Google Scholar
19.David, P. and Milon, G.: (private communication, Institut Pasteur, Paris, 2006).Google Scholar
20.Alberts, B., Johnson, A., Lewis, J., Raff, M., Roberts, K., Walter, P.: Molecular Biology of the Cell 4th ed. (Garland, New York, 2002).Google Scholar
21.Eber, S., Lux, S.: Hereditary spherocytosis: Defects in proteins that connect the membrane skeleton to the lipid bilayer. Semin. Hematol. 41, 118 (2004).CrossRefGoogle Scholar
22.Vanlair, C.F., Masius, J.B., Bull, R.: De la microcythemie. Acad. Med. Belgium 5, 515 (1871).Google Scholar
23.Eber, S.W., Pekrun, A., Neufeldt, A.: Prevalence of increased osmotic fragility of erythrocytes in German blood donors: Screening using a modified glycerol lysis test. Ann. Hematol. 64, 88 (1992).Google Scholar
24.Walensky, L.D. In Blood: Principles and Practice of Hematology 2nd ed., edited by Handin, R.I., Lux, S.E. and Stossel, T.P. (Lippincott, Williams & Wilkins, Philadelphia, PA, 2003).Google Scholar
25.Clark, M.R., Mohandas, N., Shohet, S.B.: Osmotic gradient ektocytometry: Comprehensive characterization of red cell volume and surface maintenance. Blood 61, 899 (1983).Google Scholar
26.Gallagher, P.G.: Hereditary elliptocytosis: Spectrin and protein 4.1R. Semin. Hematol. 41, 142 (2004).Google Scholar
27.Mohandas, N., Clark, M.R., Health, B.P.: A technique to detect reduced mechanical stability of red cell membranes: Relevance to elliptocytic disorders. Blood 59, 768 (1982).Google Scholar
28.Nelson, D.L., Cox, M.M.: Principles of Biochemistry 2nd ed. (Garland, New York, 2005).Google Scholar
29.Jones, M., Jones, G.: Advanced Biology (Cambridge University Press, Cambridge, UK, 1997).Google Scholar
30.Brandao, M.M., Fontes, A., Barjas-Castro, M.L., Barbosa, L.C., Costa, F.F., Cesar, C.L., Sead, S.T.O.: Optical tweezers for measuring red blood cell elasticity: Application to the study of drug response in sickle cell disease. Eur. J. Haematol. 70, 207 (2003).CrossRefGoogle Scholar