Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-28T09:23:20.089Z Has data issue: false hasContentIssue false

Mechanical Properties of Intermetallic Compounds in the Au–Sn System

Published online by Cambridge University Press:  01 August 2005

R.R. Chromik*
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Whitaker Laboratory, Bethlehem, Pennsylvania 18015
D-N. Wang
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Whitaker Laboratory, Bethlehem, Pennsylvania 18015
A. Shugar
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Whitaker Laboratory, Bethlehem, Pennsylvania 18015
L. Limata
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Whitaker Laboratory, Bethlehem, Pennsylvania 18015
M.R. Notis
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Whitaker Laboratory, Bethlehem, Pennsylvania 18015
R.P. Vinci
Affiliation:
Department of Materials Science and Engineering, Lehigh University, Whitaker Laboratory, Bethlehem, Pennsylvania 18015
*
a) Address all correspondence to this author. Present address: U.S. Naval Research Laboratory, Code 6176, 4555 Overlook Ave. S.W., Washington, DC 20375.e-mail: [email protected]
Get access

Abstract

The mechanical properties of intermetallic compounds in the Au–Sn system were investigated by nanoindentation. Measurements of hardness and elastic modulus were obtained for all of the confirmed room-temperature intermetallics in this system as well as the β phase (8 at.% Sn) and AuSn4. Overall, it was found that the Au–Sn compounds have lower hardness and stiffness than common Cu–Sn compounds found in solder joints. This finding is in contrast to common knowledge of “Au embrittlement” due to the formation of either AuSn4 or (Au,Ni)Sn4 intermetallic compounds. This difference in understanding of mechanical properties of these phases and the resulting joint strength is discussed in terms of reliability and possible failure mechanisms related to interface strength or microstructural effects. Indentation creep measurements performed on Au5Sn, Au–Sn eutectic (29 at.% Sn) and AuSn indicate that these alloys are significantly more creep resistant than common soft solders, in keeping with typical observations of actual joint performance.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Whitfield, J. and Cubbin, A.J.: Experimental observations on the effect of gold and palladium on soldered joints. Plating (East Orange, New Jersey). 52, 889 (1965).Google Scholar
2Foster, F. Gordon: Embrittlement of solder by gold from plated surfaces. ASTM Special Tech. Pub. 319, 13 (1962).Google Scholar
3Mavoori, H.: Dimensionally stable solders for optoelectronics and microelectronics. JOM 52(6), 29 (2000).CrossRefGoogle Scholar
4Zhong, C.H. and Yi, S.: Solder joint reliability of plastic ball grid array packages. Solder. Surf. Mount Technol. 11(1), 44 (1999).CrossRefGoogle Scholar
5Mei, Z. and Eslambolchi, A.: Evaluation of Ni/Pd/Au as an alternative metal finish on PCB. Circuit World 25(2), 18 (1999).CrossRefGoogle Scholar
6Mei, Z., Kaufmann, M., Eslambolchi, A., and Johnson, P.: Brittle interfacial fracture of PBGA packages soldered on electroless nickel/immersion gold, in Proceedings—Electronic Components & Technology Conference, Vol. 48 (IEEE, New York, NY, 1998), pp. 952961.Google Scholar
7Alam, M.O., Chan, Y.C. and Tu, K.N.: Elimination of Au-embrittlement in solder joints on Au/Ni metallization. J. Mater. Res. 19, 1303 (2004).CrossRefGoogle Scholar
8Marks, M.R.: Effect of burn-in on shear strength of 63Sn–37Pb solder joints on an Au/Ni/Cu substrate. J. Electron. Mater. 31, 265 (2002).CrossRefGoogle Scholar
9Daebler, D.H.: An overview of gold intermetallics in solder joints. Surf. Mount Technol. 510, 43 (1991).Google Scholar
10Minor, A.M., Morris, J.W. Jr.: Growth of a Au-Ni-Sn intermetallic compound on the solder-substrate interface after aging. Metall. Mater. Trans. 31A, 798 (2000).CrossRefGoogle Scholar
11Zribi, A., Chromik, R.R., Presthus, R., Teed, K., Zavalij, L., DeVita, J., Tova, J., Cotts, E.J., Clum, J.A., Erich, R., Primavera, A., Westby, G., Coyle, R.J. and Wenger, G.M.: Solder metallization interdiffusion in microelectronic interconnects. IEEE Trans Components Packaging Technol. 23, 383 (2000).CrossRefGoogle Scholar
12Zribi, A., Chromik, R.R., Presthus, R., Clum, J., Teed, K., Zavalij, L., DeVita, J., Tova, J., and Cotts, E.J.: Solder metallization interdiffusion in microelectronic interconnects, in 49th Electronic Components and Technology Conference (IEEE, New York, NY, 1999), pp. 451457.Google Scholar
13Ciulik, J. and Notis, M.R.: The Au–Sn phase diagram. J. Alloys Compd. 191(1), 71 (1993).CrossRefGoogle Scholar
14Ciulik, J.R. An experimental determination of the Au-rich portion of the Au–Sn phase diagram. Masters Thesis, Lehigh University, Bethlehem, PA (1988).Google Scholar
15Yost, F.G., Karnowsky, M.M., Drotning, W.D. and Gieske, J.H.: Thermal expansion and elastic properties of high gold-tin alloys. Metall. Trans. 21A, 1885 (1990).CrossRefGoogle Scholar
16Ghosh, G.: Elastic properties, hardness, and indentation fracture toughness of intermetallics relevant to electronic packaging. J. Mater. Res. 19, 1439 (2004).CrossRefGoogle Scholar
17Ciulik, J. and Notis, M.R.: Phase equilibria and physical properties in the Au–Sn system, in Microelectronic Packaging Technology, Materials and Processes, Proceedings of the 2nd ASM International Electronic Materials and Processing Congress (ASM International, Materials Park, OH, 1989), pp. 5761.Google Scholar
18Vicenzo, A., Rea, M., Vonella, L., Bestetti, M. and Cavallotti, P.L.: Electrochemical deposition and structural characterization of Au–Sn alloys. J. Solid State Electrochem. 8(3), 159 (2004).CrossRefGoogle Scholar
19Fields, R.J., III, S.R. Low, Lucey, G.K. Jr.: Physical and mechanical properties of intermetallic compounds found in solder joints, in The Metal Science of Joining, edited by Cieslak, M.J., Perepezko, J.H., Kang, S., and Glicksman, M.E. (TMS, Warrendale, PA, 1991), pp. 165174.Google Scholar
20Warburton, W.K. and Turnbull, D.: Fast diffusion in metals, in Diffusion in Solids: Recent Developments, edited by Nowick, A.S. and Burton, J.J. (Academic Press, New York, 1975), pp. 171229.CrossRefGoogle Scholar
21Chromik, R.R. and Cotts, E.J.: Thermodynamic and kinetic study of phase transformations in solder/metal systems, in Electronic Packaging Materials Science IX, edited by Groothuis, S.K., Ho, P.S., Ishida, K., and Wu, T. (Mater. Res. Soc. Symp. Proc. 445, Pittsburgh, PA, 1997), pp. 3136.Google Scholar
22Chromik, R.R., Vinci, R.P., Allen, S.L. and Notis, M.R.: Nanoindentation measurements on Cu–Sn and Ag–Sn intermetallics formed in Pb-free solder joints. J. Mater. Res. 18, 2251 (2003).CrossRefGoogle Scholar
23Deng, X., Koopman, M., Chawla, N. and Chawla, K.K.: Young’s modulus of (Cu, Ag)-Sn intermetallics measured by nanoindentation. Mater. Sci. Eng. A A364(1–2), 240 (2004).CrossRefGoogle Scholar
24Deng, X., Chawla, N., Chawla, K.K. and Koopman, M.: Deformation behavior of (Cu, Ag)–Sn intermetallics by nanoindentation. Acta Mater. 52, 4291 (2004).CrossRefGoogle Scholar
25Jang, G.Y., Lee, J.W. and Duh, J.G.: The nanoindentation characteristics of Cu6Sn5, Cu3Sn, and Ni3Sn4 intermetallic compounds in the solder bump. J. Electron. Mater. 33, 1103 (2004).CrossRefGoogle Scholar
26Chawla, N., Patel, B.V., Koopman, M., Chawla, K.K., Saha, R., Patterson, B.R., Fuller, E.R. and Langer, S.A.: Microstructure-based simulation of thermomechanical behavior of composite materials by object-oriented finite element analysis. Mater. Charact. 49, h395 (2002).CrossRefGoogle Scholar
27Tabor, D.: The Hardness of Metals (Oxford University Press, Oxford, U.K., 1951), pp. 6783.Google Scholar
28Zavalij, L., Zribi, A., Chromik, R.R., Pitely, S., Zavalij, P.Y. and Cotts, E.J.: Crystal structure of Au1−xNixSn4 intermetallic alloys. J. Alloys Compd. 334, 79 (2002).CrossRefGoogle Scholar
29Paul, A., Kodentsov, A.A. and van Loo, J.J.: Intermetallic growth and Kirkendall effect manifestations in Cu/Sn and Au/Sn diffusion couples. Z. Metallkde. 10, 913 (2004).Google Scholar
30Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
31Lucas, B.N. and Oliver, W.C.: Indentation power-law creep of high-purity indium. Metall. Mater. Trans. A 30A, 601 (1999).CrossRefGoogle Scholar
32Mayo, M.J. and Nix, W.D.: A micro-indentation study of superplasticity in Pb, Sn, and Sn-38 wt% Pb. Acta Metall. 36, 2183 (1988).CrossRefGoogle Scholar
33Lucas, J.P., Gibson, A.W., Subramanian, K.N., and Bieler, T.R.: Nanoindentation characterization of microphases in Sn-3.5 Ag eutectic solder joints, in Fundamentals of Nanoindentation and Nanotribology, edited by Moody, N.R., Gerberich, W.W., Burnham, N., and Baker, S.P. (Mater. Res. Soc. Symp. Proc. 522, Warrendale, PA, 1998), p. 339.Google Scholar
34Lucas, J.P., Rhee, H., Guo, F. and Subramanian, K.N.: Mechanical properties of intermetallic compounds associated with Pb-free solder joints using nanoindentation. J. Electron. Mater. 32, 1375 (2003).CrossRefGoogle Scholar
35Fischer-Cripps, A.C.: Nanoindentation (Springer, New York, 2002), pp.126–141.CrossRefGoogle Scholar
36Tsui, T.Y., Vlassak, J. and Nix, W.D.: Indentation plastic displacement field: Part II. The case of hard films on soft substrates. J. Mater. Res. 14, 2204 (1999).CrossRefGoogle Scholar
37Tsui, T.Y., Vlassak, J. and Nix, W.D.: Indentation plastic displacement field: Part I. The case of soft films on hard substrates. J. Mater. Res. 14, 2196 (1999).CrossRefGoogle Scholar
38Yoo, K.C., Spitznagel, J.A. and Hopkins, R.H.: Studies on the plastic-deformation of Tl3AsSe3 single-crystals by hardness indentation. J. Mater. Res. 3, 1404 (1988).CrossRefGoogle Scholar
39Brookes, C.A., Oneill, J.B., and Redfern, B.A.W.: Anisotropy in hardness of single crystals. Proc. R. Soc. London A, Math. Phys. Sci. 322, 73 (1971).Google Scholar
40Daniels, F.W. and Dunn, C.G.: The effect of orientation on Knoop hardness of single crystals of zinc and silicon ferrite. Trans. Am. Soc. Metals 41, 419 (1949).Google Scholar
41Lee, D.: Plasticity considerations for anisotropic materials in hardness indentation, in The Science of Hardness Testing and Its Research Applications, edited by Westbrook, J.H. and Conrad, H. (ASM, Metals Park, OH, 1971), pp. 147166.Google Scholar
42Riewald, P.G. and Vanvlack, L.: Deformation and fracture of MeTe and MnSe/MnTe solid solutions. J. Am. Ceram. Soc. 53, 219 1970.CrossRefGoogle Scholar
43Vahldiek, F.W. and Mersol, S.A.: Slip and microhardness of IVa to VIa refractory materials. J. Less-Common Met. 55, 265 (1977).CrossRefGoogle Scholar
44Chromik, R.R., Shugar, A., Vinci, R.P., Notis, M.R.: Plastic anisotropy of AuSn studied by indentation (unpublished).Google Scholar
45Allen, S.L., Notis, M.R., Chromik, R.R., Vinci, R.P., Lewis, D.J. and Schaefer, R.: Microstructural evolution in lead-free solder alloys: Part II. Directionally solidified eutectic Sn–Ag–Cu, Sn–Cu, and Sn–Ag alloys. J. Mater. Res. 19, 1425 (2004).CrossRefGoogle Scholar
46Chromik, R.R. (unpublished work, Lehigh University, Bethlehem, PA, 2004).Google Scholar
47Chromik, R.R. (unpublished work, Lehigh University, Bethlehem, PA, 2004).Google Scholar
48Vlassak, J.J. and Nix, W.D.: Measuring the elastic properties of anisotropic materials by means of indentation experiments. J. Mech. Phys. Solids 42, 1223 (1994).CrossRefGoogle Scholar
49Vlassak, J.J. and Nix, W.D.: Indentation modulus of elastically anisotropic half spaces. Philos. Mag. A 67, 1045 (1993).CrossRefGoogle Scholar
50Pitely, S., Zavalij, L., Zarembo, S. and Cotts, E.J.: Linear coefficients of thermal expansion of Au0.5Ni0.5Sn4, Au0.75Ni0.25Sn4, and AuSn4. Scripta Mater. 51, 745 (2004).CrossRefGoogle Scholar
51Pratt, R.E., Stromswold, E.I. and Quesnel, D.J.: Effect of solid-state intermetallic growth on the fracture toughness of Cu/63Sn-37Pb solder joints. IEEE Trans. Components, Packaging, Manufacturing Technol. A 19, 134 (1996).CrossRefGoogle Scholar