Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-18T17:21:37.444Z Has data issue: false hasContentIssue false

The mechanical properties of as-grown noncubic organic molecular crystals assessed by nanoindentation

Published online by Cambridge University Press:  19 June 2017

Matthew R. Taw
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
John D. Yeager
Affiliation:
Explosive Science and Shock Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Daniel E. Hooks
Affiliation:
Explosive Science and Shock Physics, Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA
Teresa M. Carvajal
Affiliation:
School of Agricultural and Biological Engineering, Purdue University, West Lafayette, Indiana 47907, USA
David F. Bahr*
Affiliation:
School of Materials Engineering, Purdue University, West Lafayette, Indiana 47907, USA
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Organic molecular crystals are often noncubic and contain significant steric hindrance within their structure to resist dislocation motion. Plastic deformation in these systems can be imparted during processing (tableting and comminution of powders), and the defect density impacts subsequent properties and performance. This study measured the elastic and plastic properties of representative monoclinic, orthorhombic, and triclinic molecular crystalline structures using nanoindentation of as-grown sub-mm single crystals. The variation in modulus due to in-plane rotational orientation, relative to a Berkovich tip, was approximately equal to the variation of a given crystal at a fixed orientation. The onset of plasticity occurs consistently at shear stresses between 1 and 5% of the elastic modulus in all three crystal systems, and the hardness to modulus ratio suggests conventional Berkovich tips do not generate fully self-similar plastic zones in these materials. This provides guidance for mechanical models of tableting, machining, and property assessment of molecular crystals.

Type
Articles
Copyright
Copyright © Materials Research Society 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

Contributing Editor: Linda S. Schadler

References

REFERENCES

Duncan-Hewitt, W.C. and Weatherly, G.C.: Evaluating the hardness, Young’s modulus and fracture toughness of some pharmaceutical crystals using microindentation techniques. J. Mater. Sci. Lett. 8, 1350 (1989).Google Scholar
Armstrong, R.W. and Elban, W.L.: Materials science and technology aspects of energetic (explosive) materials. Mater. Sci. Technol. 22, 381 (2006).CrossRefGoogle Scholar
Wu, C.Y., Ruddy, O.M., Bentham, A.C., Hancock, B.C., Best, S.M., and Elliot, J.A.: Modelling the mechanical behaviour of pharmaceutical powders during compaction. Powder Technol. 152, 107 (2005).Google Scholar
Sun, C.C.: Decoding powder tabletability: Roles of particle adhesion and plasticity. J. Adhes. Sci. Technol. 25, 483 (2011).Google Scholar
Malla Reddy, C., Rama Krishna, G., and Ghosh, S.: Mechanical properties of molecular crystals-applications to crystal engineering. CrystEngComm 12, 2296 (2010).Google Scholar
Jing, Y.Y., Zhang, Y., Blendell, J., Koslowski, M., and Carvajal, M.T.: Nanoindentation method to study slip planes in molecular crystals in a systematic manner. Cryst. Growth Des. 11, 5260 (2011).Google Scholar
Schuh, C.A.: Nanoindentation study of materials. Mater. Today 9(5), 3240 (2006).Google Scholar
Li, X.D., Diao, D.F., and Bhushan, B.: Fracture mechanisms of thin amorphous carbon films in nanoindentation. Acta Mater. 45, 4453 (1997).Google Scholar
Varughese, S., Kiran, M.S.R.N., Solanko, K.A., Bond, A.D., Ramamurty, U., and Desiraju, G.R.: Interaction anisotropy and shear instability of aspirin polymorphs established by nanoindentation. Chem. Sci. 2, 2236 (2011).Google Scholar
Chen, J., Wang, W., Qian, L.H., and Lu, K.: Critical shear stress for onset of plasticity in a nanocrystalline Cu determined by using nanoindentation. Scr. Mater. 49, 645 (2003).Google Scholar
Cottrell, A.H.: Dislocations and Plastic Flow in Crystals (Oxford Press, Oxford, England, 1952); p. 9.Google Scholar
Masterson, V.M. and Cao, X.P.: Evaluating particle hardness of pharmaceutical solids using AFM nanoindentation. Int. J. Pharm. 362, 163 (2008).Google Scholar
Varughese, S., Kiran, M.S.R.N., Ramamurty, U., and Desiraju, G.R.: Nanoindentation in crystal engineering: Quantifying mechanical properties of molecular crystals. Angew. Chem., Int. Ed. 52, 2701 (2013).Google Scholar
Xu, Z.H. and Li, X.: Effect of sample tilt on nanoindentation behaviour of materials. Philos. Mag. 87, 2299 (2007).Google Scholar
Liao, X.M. and Wiedmann, T.S.: Measurement of process-dependent material properties of pharmaceutical solids by nanoindentation. J. Pharm. Sci. 94, 79 (2004).Google Scholar
Zhou, X.Q., Lu, Z.P., Zhang, Q., Chen, D., Li, H.Z., Nie, F.D., and Zhang, C.Y.: Mechanical anisotropy of the energetic crystal of 1,1-diamino-2,2-dinitroethylene (FOX-7): A study by nanoindentation experiments and density functional theory calculations. J. Phys. Chem. C 120, 13434 (2016).Google Scholar
Bouma, R.H.B., Duvalois, W., and Van der Heijden, A.E.D.M.: Microscopic characterization of defect structure in RDX crystals. J. Microsc. 252, 263 (2013).Google Scholar
Ramos, K.J., Bahr, D.F., and Hooks, D.E.: Defect and surface asperity dependent yield during contact loading of an organic molecular single crystal. Philos. Mag. 91, 1276 (2011).Google Scholar
Ramos, K.J. and Bahr, D.F.: Mechanical behavior assessment of sucrose using nanoindentation. J. Mater. Res. 22, 2037 (2007).Google Scholar
Varughese, S., Kiran, M.S.R.N., Ramamurty, U., and Desiraju, G.R.: Nanoindentation in crystal engineering: Quantifying mechanical properties of molecular crystals. Angew. Chem., Int. Ed. 52, 2702 (2013).Google Scholar
Bellamy, A.J., Latypov, N.V., and Goede, P.: Nitration of the 6-methyl-1, 3, 5-triazine derivatives, 6-methyl-1, 3, 5-triazine-2, 4 (1H, 3H)-dione and 2, 4-dimethoxy-6-methyl-1, 3, 5-triazine. J. Chem. Res. 2003, 529 (2003).Google Scholar
Hiskey, M., Chavez, D., and Naud, D.L.: Insensitive high-nitrogen compounds. NTIS No: DE220012776133, 2001.Google Scholar
Son, S.F., Asay, B.W., Henson, B.F., Sander, R.K., Ali, A.N., Zielinski, P.M., Phillips, D.S., Schwarz, R.B., and Skidmore, C.B.: Dynamic observation of a thermally activated structure change in 1,3,5-triamino-2,4,6-trinitrobenzene (TATB) by second harmonic generation. J. Phys. Chem. B 103, 5434 (1999).CrossRefGoogle Scholar
Foltz, M.F., Ornellas, D.L., Pagoria, P.F., and Mitchell, A.R.: Recrystallization and solubility of 1,3,5-triamino-2,4,6-trinitrobenzene in dimethyl sulfoxide. J. Mater. Sci. 31, 1893 (1996).Google Scholar
Skidmore, C.B., Phillips, D.S., Son, S.F., and Asay, B.W.: Characterization of HMX particles in PBX 9501. In AIP Conference Proceedings, Schmidt, S.C., Dandekar, D.P. and Forbes, J.W., eds. Vol. 429 (American Institute of Physics, Melville, New York, 1998); p. 579.Google Scholar
Maughan, M.R., Carvajal, M.T., and Bahr, D.F.: Nanomechanical testing technique for millimeter-sized and smaller molecular crystals. Int. J. Pharm. 486, 324 (2015).Google Scholar
Veauthier, J.M., Chavez, D.E., Tappan, B.C., and Parrish, D.A.: Synthesis and characterization of furazan energetics ADAAF and DOATF. J. Energ. Mater. 28, 229 (2010).Google Scholar
Cady, H.H., Larson, A.C., and Cromer, D.T.: The crystal structure of α-HMX and a refinement of the structure of β-HMX. Acta Crystallogr. 16, 617 (1963).Google Scholar
Bemm, U. and Ostmark, H.: 1,1-diamino-2,2-dinitroethylene: A novel energetic material with infinite layers in two dimensions. Acta Crystallogr. 54, 1997 (1998).Google Scholar
Cady, H.H. and Larson, A.C.: The crystal structure of 1,3,5-triamino-2,4,6-trinitrobenzene. Acta Crystallogr. 18, 485 (1965).Google Scholar
Zhang, C.Y., Xue, X.G., Cao, Y.F., Zhou, J.H., Zhang, A.B., Li, H.Z., Zhou, Y., Xu, R.J., and Gao, T.: Towards low-sensitive and high-energetic co-crystal ii: Structural, electronic and energetic features of CL-20 polymorphs and the observed CL-20-based energetic-energetic cocrystals. CrystEngComm 16, 5905 (2014).Google Scholar
Ramos, K.J., Hooks, D.E., and Bahr, D.F.: Direct observation of plasticity and quantitative hardness measurements in single crystal cyclotrimethylene trinitramine by nanoindentation. Philos. Mag. 89, 2381 (2009).Google Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).Google Scholar
Bahr, D.F., Kramer, D.E., and Gerberich, W.W.: Non-linear deformation mechanisms during nanoindentation. Acta Mater. 46, 3605 (1998).Google Scholar
Wheatley, P.J.: The crystal and molecular structure of aspirin. J. Chem. Soc. 1964, 6036 (1964).Google Scholar
Ridgway, K., Shotton, E., and Glasby, J.: The hardness and elastic modulus of some crystalline pharmaceutical materials. J. Pharm. Pharmacol. 21, 19S (1969).Google Scholar
Olusanmi, D., Roberts, K.J., Ghadiri, M., and Ding, Y.: The breakage behaviour of aspirin under quasi-static indentation and single particle impact loading: Effect of crystallographic anisotropy. Int. J. Pharm. 411, 49 (2011).Google Scholar
Mohammed, H., Briscoe, B.J., and Pitt, K.G.: The intrinsic nature and the coherence of compacted pure pharmaceutical tablets. Powder Technol. 165, 11 (2006).Google Scholar
Haware, R.V., Kim, P., Ruffino, L., Nimi, B., Fadrowsky, C., Doyle, M., Boerrigter, S.X.M., Cuitino, A., and Morris, K.: Anisotropic crystal deformation measurements determined using powder X-ray diffraction and a new in situ compression stage. Int. J. Pharm. 418, 199 (2011).Google Scholar
Kucheyev, S.O., Gash, A.E., and Lorentz, T.. Deformation and fracture of LLM-105 molecular crystals studied by nanoindentation. Mater. Res. Express 1, 025036 (2014).Google Scholar
Li, M., Jun Tan, W., Kang, B., Juan Xu, R., and Tang, W.: The elastic modulus of β-HMX crystals determined by nanoindentation. Propellants, Explos., Pyrotech. 35, 379 (2010).Google Scholar
Taw, M. and Bahr, D.F.. The mechanical properties of minimally processed RDX. Propellants, Explos., Pyrotech. (2017). doi: 10.1002/prep.201600143.Google Scholar
Mathew, N. and Sewell, T.D.: Nanoindentation of the triclinic molecular crystal 1,3,5-triamino-2,4,6-trinitrobenzene: A molecular dynamics study. J. Phys. Chem. C 120, 8266 (2016).Google Scholar
Karki, S., Friscic, T., Fabian, L., and Laity, P.R.: Improving mechanical properties of crystalline solids by cocrystal formation: New compressible forms of paracetamol. Adv. Mater. 21, 3905 (2009).Google Scholar
McNamara, D.P., Childs, S.L., Giordano, J., Iarriccia, A., Cassidy, J., Shet, M.S., Mannion, R., O’Donnell, E., and Park, A.: Use of a glutaric acid cocrystal to improve oral bioavailability of a low solubility API. Pharm. Res. 23, 1888 (2006).Google Scholar
Zhang, C.Y., Xue, X.G., Cao, Y.F., Zhou, J.H., Zhang, A.B., Li, H.Z., Zhou, Y., Xu, R.J., and Gao, T.: Towards low-sensitive and high-energetic co-crystal ii: Structural, electronic and energetic features of CL-20 polymorphs and the observed CL-20-based energetic-energetic cocrystals. CrystEngComm 16, 5905 (2014).Google Scholar
Zhang, J.H. and Shreeve, J.M.: Time for pairing: Cocrystal as advanced energetic materials. CrystEngComm 18, 6124 (2016).Google Scholar
Ghosh, S., Mondal, A., Kiran, M.S.R.N., Ramamurty, U., and Reddy, C.M.: The role of weak interactions in the phase transition and distinct mechanical behavior of two structurally similar caffeine co-crystal polymorphs studied by nanoindentation. Cryst. Growth Des. 13, 4435 (2013).Google Scholar
Karunatilaka, C., Bucar, D-K., Ditzler, L.R., Friscic, T., Swenson, D.C., MacGillivray, L.R., and Tivanski, A.V.: Softening and hardening of macro- and nano-sized organic cocrystals in a single- crystal transformation. Angew. Chem., Int. Ed. 50, 8642 (2011).Google Scholar
Guo, D.Z., An, Q. III, and Huang, F.L.: Compressive shear reactive molecular dynamics studies indicating that cocrystals of TNT/CL-20 decrease sensitivity. J. Phys. Chem. 118, 30202 (2014).Google Scholar
Li, H.R., Jie Shu, Y., Gao, S.J., Chen, L., Ma, Q., and Ju, X.H.: Easy methods to study the smart energetic TNT/CL-20 co-crystal. J. Mol. Model. 19, 4909 (2013).Google Scholar
Zheng, C.M., Chu, Y.T., Xu, L.W., Wang, F.Y., Lei, W., Xia, M.Z., and Gong, X.D.: Theoretical studies on a new furazan compound bis[4-nitramino-furazanyl-3-azoxy]azofurazan (ADNAAF). J. Mol. Model. 22, 129 (2016).Google Scholar
Scott Weingarten, N. and Sausa, R.C.: Nanomechanics of RDX single crystals by force-displacement measurements and molecular dynamics simulations. J. Phys. Chem. A 119, 9338 (2015).Google Scholar
Johnson, K.L.: Contact Mechanics (Cambridge University Press, Cambridge, England 1985); p. 176.Google Scholar
Supplementary material: File

Taw supplementary material

Supplementary Figure

Download Taw supplementary material(File)
File 392 KB