Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T11:17:34.526Z Has data issue: false hasContentIssue false

Mechanical and tribological properties of AlCuFe quasicrystal and Al(Si)CuFe approximant thin films

Published online by Cambridge University Press:  28 December 2015

Simon Olsson
Affiliation:
Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping, Sweden
Esteban Broitman
Affiliation:
Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping, Sweden
Magnus Garbrecht
Affiliation:
Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping, Sweden
Jens Birch
Affiliation:
Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping, Sweden
Lars Hultman
Affiliation:
Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping, Sweden
Fredrik Eriksson*
Affiliation:
Thin Film Physics Division, IFM, Linköping University, SE-581 83 Linköping, Sweden
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Multilayered thin films of Al/Cu/Fe have been prepared by magnetron sputtering and annealed into quasicrystalline and approximant phases on Al2O3 and Si substrates, respectively. The nanomechanical and nanotribological properties, such as hardness, elastic modulus, friction, and toughness, have been measured using a triboindenter and analytical methods. The approximant phase was proved to be slightly harder than the quasicrystalline phase with a hardness of about 15.6 GPa, and with a similar elastic modulus of about 258 GPa. These values however decreased rapidly with an increasing amount of Si in the approximant. The indentation toughness of the approximant, <0.1 MPa/m½, was however inferior to that of the quasicrystals with 1.5 MPa/m½. Friction coefficients were measured in a range of 0.10–0.14 for both the quasicrystalline and approximant thin films.

Type
Articles
Copyright
Copyright © Materials Research Society 2015 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Shechtman, D., Blech, I.A., Gratias, D., and Cahn, J.W.: Metallic phase with long range orientational order and no translational symmetry. Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
Fukamichi, K., Masumoto, T., Oguchi, M., Inoue, A., Goto, T., Sakakibara, T., and Todo, S.: Magnetic and electrical properties of icosahedral quasicrystalline Al-Mn alloys. J. Phys. F: Met. Phys. 16, 1059 (1986).CrossRefGoogle Scholar
Klein, T., Berger, C., Fourcaudot, G., Grieco, J.C., and Lasjaunias, J.C.: Transport and thermodynamic properties near a metal-insulator transition in AlCuFe icosahedral phases. J. Non-Cryst. Solids 153&154, 312 (1993).CrossRefGoogle Scholar
Dubois, J.M., Kang, S.S., and Perrot, A.: Towards applications of quasicrystals. Mater. Sci. Eng. A179/A180, 122 (1994).CrossRefGoogle Scholar
Goldman, A.I. and Kelton, R.F.: Quasicrystals and crystalline approximants. Rev. Mod. Phys. 65, 213 (1993).CrossRefGoogle Scholar
Dolinšek, J., McGuiness, P.J., Klanjšek, M., Smiljanič, I., Smontara, A., Zijlstra, E.S., Bose, S.K., Fischer, I.R., Kramer, M.J., and Canfield, P.C.: Extrinsic origin of the insulating behavior of polygrain icosahedral Al-Pd-Re quasicrystals. Phys. Rev. B 74, 134201 (2006).CrossRefGoogle Scholar
Klein, T. and Symko, O.G.: Formation of AlCuFe quasicrystalline thin films by solid state diffusion. Appl. Phys. Lett. 64, 431 (1994).CrossRefGoogle Scholar
Grenet, T. and Giroud, F.: Observation of 2D quantum interference effects in quasicrystalline i-Al-Cu-Fe thin films. Mater. Sci. Eng., A A294–A296, 576 (2000).CrossRefGoogle Scholar
Fehrenbacher, L., Zabinski, J.S., Phillips, B.S., Daniels, M.J., King, D., Ketola, K.S., and Bilello, J.C.: Microstructure Development and Tribological Behavior in AlCuFe Quasicrystalline Thin Films. Tribol. Lett. 17, 435 (2004).CrossRefGoogle Scholar
Ohring, M.: Materials Science of Thin Films: Deposition & Structure (Academic Press, San Diego, 2002).Google Scholar
Tsai, A.P., Inoue, A., and Masumoto, T.: A stable quasicrystal in Al-Cu-Fe system. Jpn. J. Appl. Phys. 26, 1505 (1987).CrossRefGoogle Scholar
Huttunen-Saarivirta, E.: Microstructure, fabrication and properties of quasicrystalline Al-Cu-Fe alloys: a review. J. Alloys Compd. 363, 150 (2004).CrossRefGoogle Scholar
Giacometti, E., Baluc, N., Bonneville, J., and Rabier, J.: Microindentation of Al-Cu-Fe icosahedral quasicrystal. Scr. Mater. 41, 989 (1999).CrossRefGoogle Scholar
Köster, U., Liu, W., Liebertz, H., and Michel, M.: Mechanical properties of quasicrystalline and crystalline phases in Al-Cu-Fe alloys. J. Non-Cryst. Solids 153&154, 446 (1993).CrossRefGoogle Scholar
Zhang, L-M., Dong, C., Brunet, P., and Dubois, J-M.: Influence of valence electron concentration over friction coefficient of B2-based approximants. Mater. Sci. Eng., A 294–296, 810 (2000).CrossRefGoogle Scholar
Dubois, J-M., De Weerd, M-C., Brenner, J., Sales, M., Mozdzen, G., Merstallinger, A., and Belin-Ferré, E.: Surface energy of complex - and simple - metallic compounds as derived from friction test in vacuum. Philos. Mag. 86, 797 (2006).CrossRefGoogle Scholar
Dong, C., Zhang, L.M., Zhou, Q.G., Zhang, H.C., Dubois, J.M., Zhang, Q.H., Fu, Y.C., He, F.Z., and Ge, F.: Structure and tribological property of B2-based approximants. Bull. Mater. Sci. 22, 465 (1999).CrossRefGoogle Scholar
Quivy, A., Quiquandon, M., Calvayrac, Y., Faudot, F., Gratias, D., Berger, C., Brand, R.A., Simonet, V., and Hippert, F.: A cubic approximant of the icosahedral phase in the (Al-Si)-Cu-Fe system. J. Phys.: Condens. Matter 8, 4223 (1996).Google Scholar
Olsson, S., Eriksson, F., Birch, J., and Hultman, L.: Formation of α-approximant and quasicrystalline Al-Cu-Fe thin films. Thin Solid Films 526, 74 (2012).CrossRefGoogle Scholar
Olsson, S., Jensen, J., Garbrecht, M., Birch, J., Hultman, L., and Eriksson, F.: Structure and composition of Al(Si)CuFe approximant thin films formed by Si substrate diffusion. Thin Solid Films 550, 105 (2014).CrossRefGoogle Scholar
Oliver, W.C. and Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 15641582 (1992).CrossRefGoogle Scholar
Tanaka, K., Mitarai, Y., and Kotwa, M.: Elastic constants of Al-based icosahedral quasicrystals. Philos. Mag. A 73, 1715 (1996).CrossRefGoogle Scholar
Riester, L., Bridge, R.J., and Breder, K.: Characterization of Vickers, Berkovich, Spherical and Cube Cornered Diamond Indenters by Nanoindentation and SFM. Mater. Res. Soc. Symp. Proc. 522, 45 (1998).CrossRefGoogle Scholar
Kruzic, J.J., Kim, D.K., Koester, K.J., and Ritchie, R.O.: Indentation techniques for evaluating the fracture toughness of biomaterials and hard tissues. J. Mech. Behav. Biomed. Mater. 2, 384 (2009).Google ScholarPubMed
Quiquandon, M., Quivy, A., Devaud, J., Faudot, F., Lefebvre, S., Bessière, M., and Calvayrac, Y.: Quasicrystal and approximant structures in the Al–Cu–Fe system. J. Phys.: Condens. Matter 8, 2487 (1996).Google Scholar
Cahn, J.W., Shechtman, D., and Gratias, D.: Indexing of icosahedral quasiperiodic crystals. J. Mater. Res. 1, 13 (1986).CrossRefGoogle Scholar
Ayers, J.E.: The measurement of threading dislocation densities in semiconductor crystals by X-ray diffraction. J. Cryst. Growth 135, 71 (1994).CrossRefGoogle Scholar
Wolf, B. and Paufler, P.: Mechanical properties of quasicrystals investigated by indentation and scanning probe microscopes. Surf. Interface Anal. 27, 592 (1999).3.0.CO;2-S>CrossRefGoogle Scholar
Ding, Y., Northwood, D.O., and Alpas, A.T.: Fabrication by magnetron sputtering of Al-Cu-Fe quasicrystalline films for tribological applications. Surf. Coat. Technol. 96, 140 (1997).CrossRefGoogle Scholar
Mukhopadhyay, N.K. and Paufler, P.: Micro- and nanoindentation techniques for mechanical characterization of Materials. Int. Mater. Rev. 51, 209 (2006).CrossRefGoogle Scholar
von Stebut, J., Soro, J.M., Plaindoux, Ph., and Dubois, J-M.: Tribological properties of quasicrystalline coatings. In New Horizons in Quasicrystals, Research and Applications, Goldman, A.I., Sordelec, D.J., Thiel, P.A., and Dubois, J-M. eds.; World Scientific: Singapore, 1997; p. 248.Google Scholar
Oliver, W.C. and Pharr, G.M.: Measurement of hardness and elastic modulus by instrumented indentation: Advances in understanding and refinements to methodology. J. Mater. Res. 19, 3 (2004).CrossRefGoogle Scholar
Broitman, E. and Flores-Ruiz, F.: Novel method for in-situ and simultaneous nanofriction and nanowear characterization of materials. J. Vac. Sci. Technol., A 33, 043201 (2015).CrossRefGoogle Scholar