Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-28T10:26:42.822Z Has data issue: false hasContentIssue false

Measuring the strain rate sensitivity by instrumented indentation. Application to an ultrafine grain (equal channel angular–pressed) eutectic Sn–Bi alloy

Published online by Cambridge University Press:  03 March 2011

J. Alkorta
Affiliation:
Department of Materials, CEIT (Centro de Estudios e Investigaciones Técnicas de Gipuzkoa) and TECNUN (University of Navarra), 20080 San Sebastián, Spain
J. Gil Sevillano
Affiliation:
Department of Materials, CEIT (Centro de Estudios e Investigaciones Técnicas de Gipuzkoa) and TECNUN (University of Navarra), 20080 San Sebastián, Spain
Get access

Abstract

The ability of using nanoindentation raw data for characterizing the strain rate sensitivity of the flow stress of elastic–plastic materials has been assessed by finite element calculations. Correction factors for deducing the true strain rate sensitivity from the hardness sensitivity to the hardness penetration rate have been obtained for situations where the elastic contribution to the penetration is not negligible. The results of the analysis are applied to the experimental measurement by nanoindentation of the strain rate sensitivity of an ultrafine grain Sn–Bi eutectic processed by equal channel angular pressing. The flow stress of this material displays bilinear power-law strain-rate dependence. It is also shown that at very low indentation depths, discontinuities of the hardness–penetration curve of the fine-grain Sn–Bi can be correlated with local grain or interphase boundary slip events near the indentation.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lucas, B.N. and Oliver, W.C., Metal. Mater. Trans. 30A 601 (1999).CrossRefGoogle Scholar
2.Mayo, M.J. and Nix, W.D., Acta Metall. 36 2183 (1988).CrossRefGoogle Scholar
3.Atkins, A.G., Silvério, A. and Tabor, D., J. Inst. Metals. 94 369 (1966).Google Scholar
4.Ma, X., Yoshida, F. and Shinbata, K., Mater. Sci. Eng. A 344 296 (2003).CrossRefGoogle Scholar
5.Li, J.C.M., Mater. Sci. Eng. A 322 23 (2002).CrossRefGoogle Scholar
6.Poisl, W.H., Oliver, W.C. and Fabes, B.D., J. Mater. Res. 10 2024 (1995).CrossRefGoogle Scholar
7.Pearson, C.E., J. Inst. Metals 54 111 (1934).Google Scholar
8.Valiev, R.Z., Islamgaliev, R.K. and Alexandrov, I.V., Prog. Mater. Sci. 45 103 (2000).CrossRefGoogle Scholar
9.Segal, V.M., Mater. Sci. Eng. A 197 157 (1995).CrossRefGoogle Scholar
10.Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G., Acta Mater. 45 4733 (1997).Google Scholar
11.Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G., Acta Mater. 46 3317 (1998).Google Scholar
12.Valiev, R.Z., Scr. Mater. 37 1945 (1997).CrossRefGoogle Scholar
13.Langdon, T.G., Furukawa, M., Horita, Z. and Nemoto, M., JOM 50 41 (1998).CrossRefGoogle Scholar
14.Mabuchi, M., Ameyama, K., Iwasaki, H. and Higashi, K., Acta Mater. 47 2047 (1999).CrossRefGoogle Scholar
15.Cheng, Y-T. and Cheng, C-M., Surf. Coat. Technol. 133–134 417 (2000).CrossRefGoogle Scholar
16.Bower, A.F., Fleck, N.A., Needleman, A. and Ogbonna, N., Proc. R. Soc. (London) A 441 97 (1993).Google Scholar
17.Mulhearn, T.O. and Tabor, D., J. Inst. Metals. 89 7 (1960).Google Scholar
18.Tabor, D.The Hardness of Metals (Oxford University Press, London, UK, 1951) pp. 95116Google Scholar
19.Taljat, B., Zacharia, T. and Pharr, G.M. in High-Temperature Ordered Intermetallic Alloys VIII, edited by George, E.P., Mills, M.J., and Yamaguchi, M. (Mater. Res. Soc. Symp Proc. 552, Warrendale, PA, 1999), p. 33.Google Scholar
20.Mata, M., Anglada, M. and Alcalá, J., J. Mater. Res. 17 964 (2002).CrossRefGoogle Scholar
21.Oliver, W.C. and Pharr, G.M., J. Mater. Res. 7 1564 (1992).CrossRefGoogle Scholar
22.Sneddon, I.N., Int. J. Eng. Sci. 47 3 (1965).Google Scholar
23.Yu, W. and Blanchard, J.P., J. Mater. Res. 11 2358 (1996).CrossRefGoogle Scholar
24.Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M. and Langdon, T.G., Mater. Sci. Eng. A 257 328 (1998).CrossRefGoogle Scholar
25.Dupuy, L. and Rauch, E., Mater. Sci. Eng. A 337 241 (2002).CrossRefGoogle Scholar
26.Stolyarov, V.V., Zhu, Y.T., Alexandrov, I.V., Lowe, T.C. and Valiev, R.Z., Mater. Sci. Eng. A 299 59 (2001).CrossRefGoogle Scholar
27.Semiatin, S.L. and DeLo, D.P., Mater. Des. 21 311 (2000).CrossRefGoogle Scholar
28.Freer, Goldstein J.L. and Morris, J.W. Jr, J. Electron. Mater. 23, 477 (1994).Google Scholar