Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T12:09:42.845Z Has data issue: false hasContentIssue false

Measurement of the loss tangent of a thin polymeric film using the atomic force microscope

Published online by Cambridge University Press:  03 March 2011

P.M. McGuiggan*
Affiliation:
Polymers Division, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
D.J. Yarusso
Affiliation:
3M Center, Commercial Graphics Division, St. Paul, Minnesota 55144
*
a)Address all correspondence to this author.[email protected]
Get access

Abstract

An atomic force microscope was used to measure the loss tangent, tan δ, of a pressure-sensitive adhesive transfer tape as a function of frequency (0.01 to 10 Hz). For the measurement, the sample was oscillated normal to the surface and the response of the cantilever resting on the polymer surface (as measured via the photodiode) was monitored. Both oscillation amplitude and phase were recorded as a function of frequency. The atomic force microscopy measurement gave the same frequency dependence of tan δ as that measured by a dynamic shear rheometer on a film 20 times thicker. The results demonstrate that the atomic force microscope technique can quantitatively measure rheological properties of soft thin polymeric films.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bhushan, B., Israelachvili, J.N. and Landman, U., Nature, 374 607 (1995).CrossRefGoogle Scholar
2.Pharr, G.M. and Oliver, W.C., MRS Bull., 17 28 (1992).CrossRefGoogle Scholar
3.Pethica, J.B., Hutchings, R. and Oliver, W.C., Philos. Mag. A., 48 593 (1983).CrossRefGoogle Scholar
4.Pollock, H.M.ASM Handbook, (ASM International, Materials Park, OH, 1992), pp. 419429.Google Scholar
5.Loubet, J.L., Oliver, W.C. and Lucas, B.N., J. Mater. Res., 15 1195 (2000).CrossRefGoogle Scholar
6.Asif, S.A.S., Wahl, K.J. and Colton, R.J., Rev. Sci. Instrum., 70 2408 (1999).CrossRefGoogle Scholar
7.Briscoe, B.J., Fiori, L. and Pelillo, E., J. Phys. D.:Appl. Phys., 31 2395 (1998).CrossRefGoogle Scholar
8.Hues, S.M., Draper, C.F. and Colton, R.J., J. Vac. Sci. Technol. B, 12 2211 (1994).CrossRefGoogle Scholar
9.Burnham, N.A. and Colton, R.J., J. Vac. Sci. Technol. A, 7 2906 (1989).CrossRefGoogle Scholar
10.Gillies, G., Prestidge, C.A. and Attard, P., Langmuir, 18 1674 (2002).CrossRefGoogle Scholar
11.Reynaud, C., Sommer, F., Quet, C., El Bounia, N. and Duc, T.M., Surf. Interface Anal., 30 185 (2000).3.0.CO;2-D>CrossRefGoogle Scholar
12.Ferry, J.D.Viscoelastic Properties of Polymers, 3rd ed. (John Wiley, New York, 1980).Google Scholar
13.Macosko, C.W., Rheology Principles, Measurements, and Applications (Wiley-VCH, New York, 1994).Google Scholar
14.Barthel, E. and Haiat, G., Langmuir 18 9362 (2002).CrossRefGoogle Scholar
15.Ting, T., J. Appl. Mech. 35 248 (1968).CrossRefGoogle Scholar
16.Ting, T., J. Appl. Mech. 33 845 (1966).CrossRefGoogle Scholar
17.Giri, M., Bousfield, D. and Unertl, W.N., Tribol. Lett. 9 33 (2000).CrossRefGoogle Scholar
18.Hui, C.Y., Baney, J.M. and Kramer, E.J., Langmuir 14 6570 (1998).CrossRefGoogle Scholar
19.Kajiyama, T., Tanaka, K., Ohki, I., Ge, S.R., Yoon, J.S. and Takahara, A., Macromolecules 27 7932 (1994).CrossRefGoogle Scholar
20.Friedenberg, M.C. and Mate, C.M., Langmuir 12 6138 (1996).CrossRefGoogle Scholar
21.Fretigny, C., Basire, C. and Granier, V., J. Appl. Phys. 82 43 (1997).CrossRefGoogle Scholar
22.Paiva, A., Sheller, N., Foster, M.D., Crosby, A.J. and Shull, K.R., Macromolecules 33 1878 (2000).CrossRefGoogle Scholar
23.Wang, X.P., Xiao, X.D. and Tsui, O.K.C., Macromolecules 34 4180 (2001).CrossRefGoogle Scholar
24.Giri, M., Bousfield, D.B. and Unertl, W.N., Langmuir 17 2973 (2001).CrossRefGoogle Scholar
25.Pu, Y., Ge, S.R., Rafailovich, M., Sokolov, J., Duan, Y., Pearce, E., Zaitsev, V. and Schwarz, S., Langmuir 17 5865 (2001).CrossRefGoogle Scholar
26.Mahaffy, R.E., Shih, C.K., MacKintosh, F.C. and Kas, J., Phys. Rev. Lett. 85 880 (2000).CrossRefGoogle Scholar
27.Carpick, R.W., Ogletree, D.F. and Salmeron, M., Appl. Phys. Lett. 70 1548 (1997).CrossRefGoogle Scholar
28.Wahl, K.J., Stepnowski, S.V. and Unertl, W.N., Tribol. Lett. 5 103 (1998).CrossRefGoogle Scholar
29.Tanaka, K., Taura, A., Ge, S.R., Takahara, A. and Kajiyama, T., Macromolecules 29 3040 (1996).CrossRefGoogle Scholar
30.Mazeran, P.E. and Loubet, J.L., Tribol. Lett. 7 199 (1999).CrossRefGoogle Scholar
31.Yarusso, D.J., J. Adhes. 70 299 (1999).CrossRefGoogle Scholar
32.Pocius, A.V.Adhesion and Adhesives Technology (Hanser Publishers, Munchen, Germany, 1997).Google Scholar
33.Ducker, W.A., Senden, T.J. and Pashley, R.M., Nature 353 239 (1991).CrossRefGoogle Scholar
34.Johnson, K.L., Contact Mechanics (Cambridge University Press, Cambridge, U.K., 1985).CrossRefGoogle Scholar
35.Choi, G.Y., Kim, S.J. and Ulman, A., Langmuir 13 6333 (1997).CrossRefGoogle Scholar
36.Burnham, N.A., Gremaud, G., Kulik, A.J., Gallo, P.J. and Oulevey, F., J. Vac. Sci. & Technol. B 14 1308 (1996).CrossRefGoogle Scholar
37.Radmacher, M., Tilmann, R.W. and Gaub, H.E., Biophys. J. 64 735 (1993).CrossRefGoogle Scholar
38.Savkoor, A.R. and Briggs, G.A.D., Proc. R. Soc. (London) Ser. A 356 103 (1977).Google Scholar
39.Warmack, R.J., Zheng, X.Y., Thundat, T. and Allison, D.P., Rev. Sci. Instrum. 65 394 (1994).CrossRefGoogle Scholar
40.Pharr, G.M., Oliver, W.C. and Brotzen, F.R., J. Mater. Res. 7 613 (1992).CrossRefGoogle Scholar