Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-25T06:52:02.639Z Has data issue: false hasContentIssue false

Measurement and interpretation of strain relaxation in passivated Al–0.5% Cu lines

Published online by Cambridge University Press:  31 January 2011

Paul R. Besser
Affiliation:
Thin Films Advanced Process Development, Advanced Micro Devices, Inc., One AMD Place, Sunnyvale, California 94088
Thomas N. Marieb
Affiliation:
Components Research, Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95033
Jin Lee
Affiliation:
Components Research, Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95033
Paul A. Flinn
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305, and Components Research, Intel Corporation, 3065 Bowers Avenue, Santa Clara, California 95033
John C. Bravman
Affiliation:
Department of Materials Science and Engineering, Stanford University, Stanford, California 94305
Get access

Abstract

X-ray diffraction has been used to measure the strain relaxation in passivated Al–0.5% Cu lines at 200 °C after cooling directly from an anneal at the passivation deposition temperature of 380 °C. Fits to the measured X, Y, and Z components of strain are summed to obtain the hydrostatic component, which exhibits a decay over time. Three mechanisms are considered to explain the decay of the hydrostatic strain in the metal line: Cu precipitation from the solid solution, the presence and growth of voids in the lines, and time-dependent deformation of the passivation. Calculations of the effect of Cu precipitation from the solid solution demonstrate that it plays an insignificant role in the relaxation. A high-voltage scanning electron microscope is used to image the presence and growth of voids through the passivation. The time scale of the growth of stress-induced voids is not the same as the hydrostatic relaxation, indicating that voiding is not solely responsible for the observed relaxation. The relaxation of the line is modeled using a time-dependent finite element model, allowing elastic compliance of the passivation. The magnitude of the calculated relaxation agrees with the measurements. It is suggested that a combination of voiding and passivation compliance is responsible for the measured hydrostatic strain relaxation in the metal line.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Flinn, P. A. and Chiang, C., J. Appl. Phys. 67 (8), 29272931 (1990).CrossRefGoogle Scholar
2.Greenebaum, B., Sauter, A. I., Flinn, P. A., and Nix, W. D., Appl. Phys. Lett. 58 (17), 18451847 (1991).CrossRefGoogle Scholar
3.Tezaki, A., Mineta, T., Egawa, H., and Noguchi, T., in 1990 Int. Reliability Physics Symp. Proc. (IEEE, New York, 1990), pp. 221229.Google Scholar
4.Hosoda, T., Niwa, H., Yagi, H., and Tsuchikawa, H., in 1991 Int. Reliability Physics Symp. Proc. (IEEE, New York, 1991), pp. 7783.Google Scholar
5.Hinode, K., Asano, I., Ishiba, T., and Homma, Y., J. Vac. Sci. Technol. B 8 (3), 495498 (1990).CrossRefGoogle Scholar
6.Besser, P. R., Sauter Mack, A., Fraser, D. B., and Bravman, J.C., J. Electrochem. Soc. 140 (6), 17691772 (1993).CrossRefGoogle Scholar
7.Flinn, P. A., First International Conference on Stress Induced Phenomena in Metallization, edited by Li, C. Y., Totta, P., and Ho, P. S., American Vacuum Society Conference Proceedings (American Institute of Physics, New York, 1992).Google Scholar
8.Flinn, P. A., in Thin Films: Stresses and Mechanical Properties II, edited by Doerner, M. F., Oliver, W. C., Pharr, G. M., and Brotzen, F. R. (Mater. Res. Soc. Symp. Proc. 188, Pittsburgh, PA, 1990), pp. 312.Google Scholar
9.Besser, P. R., Brennan, S., and Bravman, J. C., J. Mater. Res. 9, 13 (1994).CrossRefGoogle Scholar
10.Besser, P. R., Marieb, T. N., and Bravman, J. C., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J. E. Jr, and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), pp. 249254.Google Scholar
11.Flinn, P. A. and Waychunas, G. A., J. Vac. Sci. Technol. B 6, 17491755 (1988).CrossRefGoogle Scholar
12.Besser, P. R., Venkatraman, R., Brennan, S., and Bravmen, J.C., in Thin Films: Stresses and Mechanical Properties III, edited by Nix, W. D., Bravman, J. C., Arzt, E., and Freund, L. B. (Mater. Res. Soc. Syp. Proc. 239, Pittsburgh, PA, 1992), pp. 233238.Google Scholar
13.Murray, J. L., Int. Metals Rev. 130 (5), 211233 (1985).Google Scholar
14.Lankes, J. C. and Wassermann, G., Z. Metallk. 41, 381391 (1950).Google Scholar
15.Thomas, G. and Whelan, M. J., Philos. Mag. Ser. 8 (6), 11031114 (1960).Google Scholar
16.Venkatraman, R., Bravman, J. C., Nix, W. D., Davies, P. W., Flinn, P. A., and Fraser, D. B., J. Electron. Mater. 19, 12311238 (1990).CrossRefGoogle Scholar
17.Michael, J. R., Romig, A. D. Jr, and Frear, D. R., in Structure/Property Relationships for Metal/Metal Interfaces, edited by Roming, A. D. Jr, Fowler, D. E., and Bristowe, P. D. (Mater. Res. Soc. Symp. Proc. 229, Pittsburgh, PA, 1991), pp. 303308.Google Scholar
18.Frear, D. R., Sanchez, J.E. Jr, Romig, A. D. Jr, and Morris, J.W., Metall. Trans. A 21A, 24492458 (1990).CrossRefGoogle Scholar
19.Besser, P. R., Venkatraman, R., Brennan, S., and Bravman, J.C., in Applications of Synchrotron Radiation Techniques to Materials Science, edited by Perry, D. L., Perry, N. D., Shinn, N. D., Stockbauer, R. L., D'Amico, K. L., and Terminello, L. J. (Mater. Res. Soc. Symp. Proc. 307, Pittsburgh, PA, 1993), pp. 161166.Google Scholar
20.Besser, P. R., Madden, M. C., and Flinn, P. A., J. Appl. Phys. 72 (8), 37923798 (1992).CrossRefGoogle Scholar
21.Madden, M. C., Abratowski, E. A., Marieb, T., and Flinn, P. A., in Materials Reliability in Microelectronics II, edited by Thompson, C. V. and Lloyd, J. R. (Mater. Res. Soc. Symp. Proc. 265, Pittsburgh, PA, 1992), pp. 3338.Google Scholar
22.Marieb, T., Abratowski, E. V., Bravman, J. C., Madden, M. C., and Flinn, P. A., in Second International Conference on Stress Induced Phenomena in Metallization, edited by Ho, P. S. and Li, C. Y., American Vacuum Society Conference Proceedings (American Institute of Physics, New York, 1993).Google Scholar
23.Follstaedt, D. M., van den Avyle, J. A., Romig, A. D., and Knapp, J.A., in Materials Reliability Issues in Microelectronics, edited by Lloyd, J. R., Yost, F. G., and Ho, P. S. (Mater. Res. Soc. Symp. Proc. 225, Pittsburgh, PA, 1992), pp. 225231.Google Scholar
24.Korhonen, M. A., Paszkiet, C. A., and Li, C-Y, J. Appl. Phys. 69 (12), 80838091 (1991).CrossRefGoogle Scholar
25.Flinn, P. A., J. Mater. Res. 6, 1498 (1991).CrossRefGoogle Scholar
26.Zienkiewicz, O. C. and Taylor, R. L., The Finite Element Method, 4th ed. (McGraw-Hill, London, 1989), Vol. 2.Google Scholar