Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-12T02:52:29.387Z Has data issue: false hasContentIssue false

Materials in nanopipes of undoped GaN

Published online by Cambridge University Press:  26 July 2012

Junyong Kang
Affiliation:
Department of Physics, Xiamen University, Xiamen 361005, People's Republic of China and Department of Physics, Gakushuin University, Mejiro, Tokyo 171, Japan
Tomoya Ogawa
Affiliation:
Department of Physics, Gakushuin University, Mejiro, Tokyo 171, Japan
Get access

Extract

The nanopipes in undoped GaN epilayers grown on sapphire substrates were investigated by field emission high-resolution electron microscopy (HREM) and energy-dispersive x-ray spectrometry (EDS). In the HREM images, the cores of the nanopipes appeared disordered in the thin regions and more ordered in the thicker regions, indicating the amorphous layer on the surface has a significant influence on the visible image of the nanopipe in the thin regions. The EDS spectra showed that composition of the materials in nanopipes was mainly oxygen, carbon, and gallium elements. The results suggest that the nanopipes are related to impurities.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Amano, H., Sawaki, N., Akasaki, I., and Toyoda, Y., Appl. Phys. Lett. 48, 353 (1986).CrossRefGoogle Scholar
2.Nakamura, S., Jpn. J. Appl. Phys. 10A, L1705 (1991).Google Scholar
3.Qian, W., Skowronski, M., De Graef, M., Doverspike, K., Rowland, L. B., and Gaskill, D. K., Appl. Phys. Lett. 66, 1252 (1995).Google Scholar
4.Ning, X. J., Chien, F. R., Pirouz, P., Yang, J., and Khan, M. A., J. Mater. Res. 11, 580 (1996).CrossRefGoogle Scholar
5.Wu, X. H., Brown, L. M., Kapolnek, D., Keller, S., Keller, B., Denbaars, S. P., and Speck, J. S., J. Appl. Phys. 80, 3228 (1996).Google Scholar
6.Kang, J. and Ogawa, T., Appl. Phys. Lett. 71, 2304 (1997).Google Scholar
7.Qian, W., Rohrer, G. S., Skowronski, M., Doverspike, K., Rowland, L. B., and Gaskill, D.K., Appl. Phys. Lett. 67, 2284 (1995).Google Scholar
8.Vennegues, P., Beaumont, B., Vaille, M., and Gibart, P., Appl. Phys. Lett. 70, 2434 (1997).Google Scholar
9.Liliental-Weber, Z., Chen, Y., Ruvimov, S., and Washburn, J., Phys. Rev. Lett. 79, 2835 (1997).Google Scholar
10.Anstis, G. R. and Hutchison, J. L., Dislocations in Solids, edited by Nabarro, F. R. N. (Elsevier Science Publishers B. V., New York, 1992), Vol. 9, Chap. 44.Google Scholar
11.Chung, B-C. and Gershenzon, M., J. Appl. Phys. 72, 651 (1992).Google Scholar
12.Yi, G-C. and Wessels, B. W., Appl. Phys. Lett. 70, 357 (1997).Google Scholar
13.Mattila, T. and Nieminen, R. M., Phys. Rev. B 54, 16676 (1996).Google Scholar
14.Park, C. H. and Chadi, D. J., Phys. Rev. B 55, 12995 (1997).Google Scholar
15.Turnbull, D., J. Chem. Phys. 18, 198 (1950).Google Scholar
16.Chakraverty, B. K. and Pound, G. M., Acta Metall. 12, 851 (1964).CrossRefGoogle Scholar
17.Sholl, C. A. and Fletcher, N. H., Acta Metall. 18, 1083 (1970).Google Scholar
18.Lester, S. D., Ponce, F. A., Craford, M. G., and Steigewald, D. A., Appl. Phys. Lett. 66, 1249 (1995).Google Scholar
19.Sverdlov, B. N., Martin, G. A., Morkoc, H., and Smith, D. J., Appl. Phys. Lett. 67, 2063 (1995).Google Scholar
20.Larche, F. C., Dislocations in Solids, edited by Nabarro, F. R. N. (North-Holland Publishing Company, Amsterdam, 1979), Vol. 4, Chap. 14.Google Scholar