Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-10T19:03:18.534Z Has data issue: false hasContentIssue false

Manufacturing and commercialization issues in organic electronics

Published online by Cambridge University Press:  03 March 2011

James R. Sheats*
Affiliation:
Lost Arrow Consulting, Palo Alto, California 94301
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Techniques for manufacturing organic electronic devices [organic light-emitting diodes (OLEDs), photovoltaic cells, transistors, and solid-state memory] are reviewed and analyzed with respect to cost and market fitness in comparison to competitive approaches based on silicon electronics. The conclusions are (i) OLED displays will be successful using infrastructure largely borrowed from liquid crystal displays, because they provide fundamental customer value not dependent on lower cost; (ii) OLEDs for general lighting and organic–inorganic hybrid photovoltaic cells currently confront substantial barriers in cost and efficiency, but solutions appear feasible and would lead to very large volume businesses; (iii) organic crossbar memories are promising, but require innovations in driver architecture and interconnection; and (iv) organic transistors have not yet found a viable major market, but have great promise for highly customized, small-volume product runs using digital patterning techniques.

Type
Reviews—Organic Electronics Special Section
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Pope, M. and Swenberg, C.E.: Electronic Processes in Organic Crystals and Polymers, 2nd ed. (Oxford University Press, Oxford, U.K., 1998).Google Scholar
2.reviews, For excellent, Kagan, references see C.R., Andry, P. and eds., : Thin Film Transistors (Marcel Dekker, New York, 2003)Google Scholar
4.Rogers, J.A., Bao, Z., Baldwin, K., Dodabalapur, A., Crone, B., Raju, V.R., Kuck, V., Katz, H., Amundson, K., Ewing, J. and Drzaic, P.: Paper-like electronic displays: Large-area rubberstamped plastic sheets of electronics and microencapsulated electrophoretic inks. Proc. Natl. Acad. Sci. 98, 4835 (2001).CrossRefGoogle ScholarPubMed
5.Rogers, J.A., Dodabalapur, A., Bao, Z. and Katz, H.E.: Low-voltage 0.1 mm organic transistors and complementary inverter circuits fabricated with a low-cost form of near-field photolithography. Appl. Phys. Lett. 75, 1010 (1999).CrossRefGoogle Scholar
6.Dimitrakopoulos, C.D. and Mascaro, D.J.: Organic thin-film transistors: A review of recent advances. IBM J. Res. Dev. 45, 11 (2001).CrossRefGoogle Scholar
7.Perettie, D., Hwang, W., T. McCarthy, Pierini, P., Speliotis, D., Judy, J., and Chen, Q.: A high-performance, flexible substrate for thin-film media, J. Magn. Magn. Mater. 120, 334 (1993).CrossRefGoogle Scholar
8.Ikeda, M., Mizutani, Y., Ashida, S., and Yamada, K.: Characteristics of low-temperature-processed a-Si TFT for plastic substrates. IEICE Trans. Electron. E83-C, 1584 (2000).Google Scholar
9.Sheats, J.R. Roll-to-roll manufacturing of thin film electronics. Proc. SPIE 4388, 240 (2002).CrossRefGoogle Scholar
10.Kukla, R., Ludwig, R. and Meinel, J.: Overview on modern vacuum web coating technology. Surf. Coat. Technol. 86, 753 (1996).CrossRefGoogle Scholar
11.Sheats, J.R., Smith, B.W. eds.: Microlithography: Science and Technology (Marcel Dekker, New York, 1998).Google Scholar
12.Jain, K., Zemel, M., and Klosner, M.: Large-area, high-resolution lithography and photoablation systems for microelectronics and optoelectronics fabrication. Proc. IEEE 90, 1681 (2002).CrossRefGoogle Scholar
13.Clube, F., Jorda, M., Mourgue, S., Nobari, A.R., Inoue, S., Iriguchi, C., Grass, E., Mayer, H. and Brunner, M.: 0.5-μm enabling lithography for low-temperature polysilicon displays. SID Conf. Digest . 34, 350 (2003).CrossRefGoogle Scholar
14.Baldo, M.A., Kozlov, V.G., Burrows, P.E., Forrest, S.R., Ban, V.S., Koene, B. and Thompson, M.E.: Low pressure organic vapor phase deposition of small molecular weight organic light emitting device structures. Appl. Phys. Lett . 71, 3033 (1997).CrossRefGoogle Scholar
15.Kistler, S.F., Schweizer, P.M. and eds., : Liquid Film Coating (Chapman & Hall, 1997).CrossRefGoogle Scholar
16.Shepherd, F.: Modern Coating Technology Systems (Emap Maclaren Ltd, Barnet, U.K., 1995).Google Scholar
17.Rogers, J.A., Bao, Z., Katz, H.E. and Dodabalapur, A.: Organic Transistors: Materials, Patterning Techniques, and Application, in Ref. 2, pp. 377426.Google Scholar
18.Blanchet, G.B., Loo, Y-L., Rogers, J.A., Gao, F. and Fincher, C.R.: Large area, high resolution, dry printing of conducting polymers for organic electronics. Appl. Phys. Lett. 82, 463 (2003).CrossRefGoogle Scholar
19.Xia, Y. and Whitesides, G.W. Soft lithography. Angew. Chem. Int. Ed. 37, 550 (1998).3.0.CO;2-G>CrossRefGoogle Scholar
20.Michel, B., Bernard, A., Bietsch, A., Delamarche, E., Geissler, M., Juncker, D., Kind, H., Renault, J-P., Rothuizen, H., Schmid, H., Schmidt-Winkel, P., Stutz, R. and Wolf, H.: Printing meets lithography: Soft approaches to high-resolution patterning. IBM J. Res. Dev. 45, 697 (2001).CrossRefGoogle Scholar
21.Calvert, P.: Inkjet printing for materials and devices. Chem. Mater. 13 3299–3305 (2001).CrossRefGoogle Scholar
22.Walton, A.J., J.Stevenson, T.M., Fallon, M., Evans, P.S.A., Ramsey, B.J. and Harrison, D.J.: Characterisation of offset lithographic films using microelectronic test structures. IEICE Trans. Electron. E-82-C, 576–581 (1999).Google Scholar
23.Wilhelm, E.J. and Jacobsen, J., in Flexible Electronics—Materials and Device Technology, edited by Fruehauf, N., Chalamala, B.R., Gnade, B.E., and Jang, J. (Mater. Res. Soc. Symp. Proc. 769, Warrendale, PA, 2003), p. 247, H8.1–6.Google Scholar
24.Torres, C.M. Sotomayor ed., Alternative Lithography (Kluwer, 2003).CrossRefGoogle Scholar
25. Heng Liu: High-volume production of AlInGaN-based LEDs, Compound Semiconductor Magazine, Nov 2001, available at http://www.compoundsemiconductor.net/articles/magazine/7/11/4/1.Google Scholar
26. 1280 × 1064 pixels at $300, currently a “sale” price but rapidly becoming common.Google Scholar
27.Kimmel, J.: Displays for portable communications devices, Information Display (SID) 17, 1821 (Sep. 2001).Google Scholar
28. Press release: 26 June 2002; www.creo.com.Google Scholar
29.Lee, S.T., Lee, J.Y., Kim, M.H., Suh, M.C., Kang, T.M., Choi, Y.J., Park, J.Y., Kwon, J.H., Chung, H.K., Baetzold, J., Bellmann, E., Savveteev, V., Wolk, M. and Webster, S.: A new patterning method for full-color polymer light-emitting devices: laser induced thermal imaging (LITI). SID Conf. Digest 33, 784 (2002).CrossRefGoogle Scholar
30.Mueller, C.D., Falcou, A., Reckefuss, N., Rojahn, M., Wiederhim, V., Rudati, P., Frohne, H., Nuyken, O., Becker, H. and Meerholz, K.: Multi-colour organic light-emitting displays by solution processing. Nature 421, 829 (2003).CrossRefGoogle Scholar
31.Tachikawa, T., Itoh, N., Handa, S., and Miyake, T.: Full-color polymer light-emitting devices using photolithography method. Proc. 23rd International Display Research Conference, (15-18 Sep 2003, Phoenix, AZ), pp. 4548.Google Scholar
32. The exact amount depends of course on page coverage, amount of color, and type of paper, but this is a typical average for ordinary paper, which was obtained from the HP website http:\\www.hp.com. It does not include the cost of the printer, which in most cases adds less than a penny per page.Google Scholar
33.Dreher, C.: Why do books cost so much? Salon.com, 3 Dec 2002; available at http://www.salon.com/books/feature/2002/12/03/prices.Google Scholar
34. The company which is arguably the leader in supplying innovative jet-printing technology is Microfab, but they serve mainly R&D applications rather than a specific production focus.Google Scholar
35.Edwards, C., Bennett, R., J-G. Lee, and Silz, K.: Precision industrial ink jet printing technology for full color PLED display manufacturing, 2nd Internat. Meeting on Inf. Display (Daegu, Korea, Jul 2002); available at http://www.litrex.com.Google Scholar
36. SEMATECH Final Report for LITG501, Technology Transfer #00104014A-TR, 31 Oct 2000.Google Scholar
38.Maurer, A., A.C. Hübler, and Wozniak, G.: Rheological Demands on Offset Printing Ink for New Inking Unit Concepts, 2nd Internat. Symp. Printing & Coating Technol. (18-19 September 2000; University of Wales, Swansea, Wales, U.K.)Google Scholar
39.Brill, J., Lueder, E., Randler, M., Voegele, S. and Frey, V.: A flexible ferroelectric liquid crystal display with improved mechanical stability for smart-card applications. J. SID. 10, 189 (2002).Google Scholar
40.Bergh, A., Craford, G., Duggal, A., and Haitz, R.: The promise and challenge of solid-state lighting, Phys. Today 54, 42 (2001).CrossRefGoogle Scholar
41.Kennedy, C.E., Swisher, R., and Smilgys, R.V.: Cost analysis of solar reflective hard-coat materials, Proc. 17th Internat. Vacuum Web Coating Conf. (26-29 Oct. 2003, Santa Ana Pueblo, NM).CrossRefGoogle Scholar
42.D’Andrade, B.W. and Forrest, S.R.: Single-dopant p-i-n white organic light emitting devices. SID Symp. Digest 34, 967 (2003).CrossRefGoogle Scholar
43.Schwambera, M., Meyer, N., Gersdorff, M., Reinhold, M., Strauch, G., Beccard, R. and Heuken, M.: OLED manufacturing by organic vapor phase deposition. SID Symp. Digest 34, 1419 (2003).CrossRefGoogle Scholar
44.Matsumoto, E., Maki, S., Yanagi, Y., Nishimori, T., Kondo, Y., Kishi, Y. and Kido, J.: The high deposition rates and high material yield evaporation method for oled layers. SID Conf. Digest 34, 1423 (2003).CrossRefGoogle Scholar
45.Shibata, M., Klein, D., Hartmann, R. and Chow, P.P.: Versatile evaporation source for large OLED panel manufacturing. SID Conf. Digest 34, 1426 (2003).CrossRefGoogle Scholar
46.Li, G. and Shinar, J.: Combinatorial fabrication and studies of bright white organic light-emitting devices based on emission from rubrene-doped 4,4′-bis(2,2′-diphenylvinyl)-1,1′-biphenyl. Appl. Phys. Lett . 83, 5359 (2003).CrossRefGoogle Scholar
47.Duggal, A.: unpublished; Jan. 2004. Lifetime of the blue primary emitter is not available.Google Scholar
48.Brown, R.D. Indium, U.S. Geological Survey, Mineral Commodity Summaries (January 2002), p. 80; available at http://minerals.usgs.gov/minerals/pubs/commodity/indium/.Google Scholar
49. Light Emitting Diodes 2003 conference (Intertech USA); available at www.environmental-expert.com/events/leds2003/leds2003.htmGoogle Scholar
51.Lievens, H.: Wide web coating of complex materials. Surf. Coat. Technol . 76, 744 (1995).CrossRefGoogle Scholar
52.Hissler, M., McGarrah, J.E., Connick, W.B., Geiger, D.K., Cummings, S.D. and Eisenberg, R.: Platinum diimine complexes: towards a molecular photochemical device. Coord. Chem. Rev. 208, 115 (2000).CrossRefGoogle Scholar
53.Tang, C.W., Marchetti, A.P., and Young, R.H.: Organic photovoltaic elements:, U.S. Patent No. 4,125,414 (13 Mar 1978).Google Scholar
54.Tang, C.E.: Two-layer organic photovoltaic cell. Appl. Phys. Lett . 48, 183 (1986).CrossRefGoogle Scholar
55.Yu, G., Gao, J., Hummelen, J.C., Wudl, F. and Heeger, A.J.: Polymer photovoltaic cells: Enhanced efficiencies via a network of internal donor-acceptor heterojunctions. Science 270, 1789 (1995).CrossRefGoogle Scholar
56. Dieter Meissner: Plastic Solar Cells. International Photovoltaics Journal Feb-Mar 1999.Google Scholar
57.O’Regan, B. and Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).CrossRefGoogle Scholar
58.Alsema, E.A. Environmental aspects of solar cell modules: Summary report. Report nr. 96074; ISBN 90-73958-17-2 (Aug 1996); Dept. of Science, Technology and Society, Ultrecht University, Padualaan 14, NL-3584 CH Ultrecht, The NetherlandsGoogle Scholar
59. PV systems are customarily rated according to a standard “peak” solar intensity known as AM1.5. This calculation assumes that 1 GWcontinuous = 6.5 GWp, and module lifetime 25 years.Google Scholar
60.Makower, J., Pernick, R., and Friendly, A.: Solar Opportunity Assessment Report, (Solar Catalyst Group and Coop America Foundation, Washington, DC, Dec 2003); http://www.solarcatalyst.com Dec 2003); http://www.solarcatalyst.comGoogle Scholar
61.Yang, J., Banerjee, A. and Guha, S.: Triple-junction amorphous silicon alloy solar cell with 14.6% initial and 13.0% stable conversion efficiencies. Appl. Phys. Lett . 70, 2975 (1997).CrossRefGoogle Scholar
62.Schropp, R.E.I., Van Der Werf, C.H.M., Zeman, M., Van De Sanden, M.C.M., Spee, C.I.M.A., Middelman, E., De Jonge-Meschaninova, L.V., Peters, P.M.G.M., Van Der Zijden, A.A.M., Besselink, M.M., Severens, R.J., Winkler, J., and Jongerden, G.J., in Amorphous and Heterogeneous Silicon Thin Films: Fundamentals to Devices—1999, edited by Branz, H.M., Collins, R.W., Okamoto, H., Guha, S., and Schropp, R. (Mater. Res. Soc. Symp. Proc. 557, Warrendale, PA, 1999), p. 713.Google Scholar
63.http://www.thaiphotovoltaics.com (their plan is for a-Si on glass, using entirely conventional manufacturing processes, but taking advantage of a Thailand-based business model; with an ultimate cost projection of less than $1/W).Google Scholar
64.Yano, M., Suzuki, K., Nakatani, K. and Okaniwa, H.: Roll-to-roll preparation of a hydrogenated amorphous silicon solar cell on a polymer film substrate. Thin Solid Films 146, 75 (1987).CrossRefGoogle Scholar
65.Ichikawa, Y., Fujikaka, S., Tabuchi, K., Sasaki, T., Hama, T., Yoshida, T., Sakai, H., and Saga, M., in Amorphous and Heterogeneous Solicon Thin Films: Fundamentals to Devices—1999, edited by Branz, H.M., Collins, R.W., Okamoto, H., Guha, S., and Schropp, R. (Mater. Res. Soc. Symp. Proc. 557, Warrendale, PA, 1999), p. 703.Google Scholar
66.Yoshida, T., Fujikaka, S., Kato, S., Tanda, M., Tabuchi, K., Takano, A., Ichikawa, Y. and Sakai, H.: Development of process gtechnologies for plastic-film substrate solar cells. Solar Energy Materials and Solar Cells 48, 383 (1997).CrossRefGoogle Scholar
67.CdTe, and Cu, (In,Ga)Se solar cells have also been made using roll-to-roll processes; review of these is beyond the scope of this article. Amorphous silicon is a prototypical competitor to organic PV but not a unique one.Google Scholar
68.Shah, A., Torres, P., Tscharner, R., Wyrsch, N. and Keppner, H.: Photovoltaic technology: The case for thin-film solar cells. Science 285, 692 (1999).CrossRefGoogle ScholarPubMed
69.Grimmer, À.D., Jeffrey, F., Martens, S., Thomas, M., Dalal, V., Noack, M. and Shanks, H.: Lightweight, flexible, monolithic thin-film amorphous silicon modules on continuous polymer substrates. Int. J. Solar Energy 18, 205 (1996).CrossRefGoogle Scholar
70.Aernouts, T., Vanlaeke, P., Geens, W., Poortmans, J., Heremans, P., Borghs, S., Mertens, R., Andriessen, R. and Leenders, L.: Printable anodes for flexible organic solar cell modules. Thin Solid Films 451, 22 (2004).CrossRefGoogle Scholar
71.Crandall, R. and Luft, W.: The future of amorphous silicon photovoltaic technology. Prog. Photovoltaics: Research and Applications 3, 315 (1995).CrossRefGoogle Scholar
72.Dalal, V.: Fundamental considerations regarding the growth of amorphous and microcrystalline silicon and alloy films. Thin Solid Films 395, 173 (2001).CrossRefGoogle Scholar
73.Korevaar, B.A., Adriaenssens, G.J., Smets, A.H.M., Kessels, W.M.M., Song, H-Z., van Sanden, M.C.M. de and Schram, D.C.: High hole drift mobility in a-Si: H deposited at high growth rates for solar cell application, J. Non-Cryst. Solids 266, 380 (2000).CrossRefGoogle Scholar
74.Wehrspohn, R.B., Deane, S.C., French, I.D. and Powell, M.J.: Stability of plasma deposited thin film transistors-comparison of amorphous and microcrystalline silicon. Thin Solid Films 383, 117 (2001).CrossRefGoogle Scholar
75.Shaheen, S.E., Brabec, C.J., Saraciftci, N.S., Padinger, F., Fromherz, T. and Hummelen, J.C.: 2.5% efficient organic plastic solar cells. Appl. Phys. Lett. 78, 841 (2001).CrossRefGoogle Scholar
76.Huynh, W.U., Dittmer, J.J. and Alivisatos, A.P.: Hybrid nanorod-polymer solar cells. Science 295, 2425 (2002).CrossRefGoogle ScholarPubMed
77.Krüger, J., Plass, R., Cevey, L., Piccirelli, M. and Grätzel, M.: High efficiency solid-state photovoltaic device due to inhibition of interface charge recombination. Appl. Phys. Lett . 79, 2085 (2001).CrossRefGoogle Scholar
78.Journal, R.F.I.D.: (23 Jan 2004); available at http://121.131.129/article/articleprint/764/-1/1/.Google Scholar
79.Burns, S.E., Cain, P., Mills, J., Wang, J., and Sirringhaus, H.: Inkjet printing of functional materials. MRS Bull. Nov, 829–834 (2003).CrossRefGoogle Scholar
80.McDonald, M., Heun, S. and Tallant, N.: Advances in piezoelectric deposition of organic electronic materials, IS&T Internat. Conf. Digital Printing Technol. NIP 18 (San Diego, CA, 29 Sep-4 Oct 2003).CrossRefGoogle Scholar
81. Plastic Logic has introduced a technique using conventional lithography to pattern surface energy and thereby increase printing resolution; cf. Ref. 86. This does not materially change the following discussion.Google Scholar
82. W-K. Chang: in Nikkei Electronics Asia, August 2002 (available at http://neasia.nikkeibp.com/nea/200208/inst200146.html). The cost quoted here assumes manufacturing cost to be 50% of consumer price, and the TFT panel to be 40% of manufacturing cost; these are approximate but reasonable estimates. Current retail prices of LCD monitors suggests that Samsung as well as many other companies are meeting or exceeding this projection already.Google Scholar
83. This does not mean that other factors such as labor, floorspace, materials, etc. are unimportant, but they tend to be secondary, and are accounted for by the capital/throughput metric on a relative basis.Google Scholar
84.Kim, S.S.: Fabricating color TFT-LCDs. Information Display 17 (n.9), 22 (Sep 2001).CrossRefGoogle Scholar
85. The data underlying this assertion can be found in a wide range of equipment vendor press releases and Sematech notes (see ref. 36 for example), as well as from private conversations with representatives of equipment suppliers. Note also Chiu, G.L.-T and Shaw, J.M.: Optical lithography: introduction. IBM J. Res. Dev. 41, 3 (1997).CrossRefGoogle Scholar
86.Sirringhaus, H., Kawase, T.L., Friend, R.H., Shimoda, T., Inbasekaran, M., W. Wu and Woo, E.P.: High-resolution inkjet printing of all-polymer transistor circuits. Science 290, 2123 (2000).CrossRefGoogle ScholarPubMed
87.Stewart, Roger private communication.Google Scholar
88.Dimitrakopoulos, C.D., Purushothaman, S., Kymissis, J., Callegari, J. and Shaw, J.M.: Low-voltage organic transistors on plastic comprising high-dielectric constant gate insulators. Science 283, 822 (1999).CrossRefGoogle ScholarPubMed
89.Collet, J., Tharaud, O., Chapoton, A. and Vuillaume, D.: Low-voltage, 30 nm channel length, organic transistors with a self-assembled monolayer as gate insulating films. Appl. Phys. Lett . 76, 1941 (1998).CrossRefGoogle Scholar
90.Rogers, J.A., Dodabalapour, A., Bao, Z. and Katz, H.E.: Low-voltage 0.1 mm organic transistors and complementary inverter circuits fabricated with a low-cost form of near-field photolithography. Appl. Phys. Lett. 75, 1010 (1999).CrossRefGoogle Scholar
91.Drury, À C.J., Mutsaers, C.M.J., Hart, C.M., Matters, M. and de Leeuw, D.M.: Low-cost all-polymer integrated circuits. Appl. Phys. Lett. 73, 108 (1998).CrossRefGoogle Scholar
92.Landesberger, C., Scherbaum, S., Schwinn, G. and Spöhrle, H.: New process scheme for wafer thinning and stress-free separation of ultra thin ICs. Internat. Conf. on Micro-, Electro-, Opto-, Mechanical Systems and Components, Düsseldorf, 27-29 Mar 2001 (VDE-Verlag, 2001), pp. 431436.Google Scholar
93.Harder, T. and Reinert, W.: Low-profile flip-chip assembly using ultra-thin ICs. Proc. Internat. Conf. Adv. Packaging and Systems (10-13 Mar 2002; Reno, NV; Internat. Microelectronics and Packaging Society, www.imaps.org Packaging Society,).Google Scholar
94.more, Possibly this calculation is based on the density of Pentium-type microprocessors, whose density is interconnection limited.Google Scholar
95.Okada, Y., Ban, A., Okamoto, M., Oka, W., Matsuda, Y. and Shibahara, S.: A 4-inch reflective color TFT-LCD using a plastic substrate. SID Conf. Digest 33, 1204 (2002).CrossRefGoogle Scholar
96.Gleskova, H., Wagner, S., Gašparik, V. and Kovác, P.: 150°C amorphous silicon thin-film transistor technology for polyimide substrates: Silicon nitride layer and interface optimization. J. Electrochem. Soc . 148, G370 (2001).CrossRefGoogle Scholar
97.Sheats, J.R.: Vacuum process considerations for large area flexible electronics. Proc. 17th Internat. Vacuum Web Coating Conf. (26-20 Oct. 2003, Santa Ana Pueblo, NM).Google Scholar
98.Forbes, C.E., Gelbman, A., Turner, C., Gleskova, H. and Wagner, S.: A rugged conformable backplane fabricated with an a-Si:H TFT array on a polyimide substrate. SID Conf. Digest . 33, 1200 (2002).CrossRefGoogle Scholar
99.Lueder, E.: Passive and active matrix liquid crystal displays with plastic substrates. Electrochem. Soc. Proc . 98, 336 (1999).Google Scholar
100.Sazonov, A., Nathan, A., Murthy, R.V.R., and Chamberlain, S.G., in Flat-Panel Displays and Sensors—Principles, Materials and Processes, edited by Chalamala, B.R., Friend, R.H., Jackson, T.N., and Libsch, F.R. (Mater. Res. Soc. Symp. Proc. 558, Warrendale, PA, 2000), p. 375.Google Scholar
101.MacDonald, B.A., Rollins, K., Eveson, R., Rakos, K., Rustin, B.A., and Handa, M., in Flexible Electronics—Materials and Device Technology, edited by Fruehauf, N., Chalamala, B.R., Gnade, B.E., and Jang, J. (Mater. Res. Soc. Symp. Proc. 769, Warrendale: PA, 2003), p. 283, H9.3.1–8.Google Scholar
102.Inoue, S., Utsunomiya, S., Saeki, T. and Shimoda, T.: Surface-free technology by laser annealing (SUFTLA) and its application to poly-Si TFT-LCDs on plastic film with integrated drivers. IEEE Trans. Electron Dev. 49, 1353 (2002).CrossRefGoogle Scholar
103.Asano, A. and Kinoshita, T.: Low-temperature polycrystalline-silicon TFT color LCD panel made of plastic substrates. SID Conf. Digest 33, 1196 (2002).CrossRefGoogle Scholar
104.Jacobsen, J., Chiang, A., Hermanns, A., McDonald, M., Vicentini, F., Marentic, M., Atherton, J., Boling, E., Cuomo, F., Drzaic, P., Holman, A., Liu, G., Pearson, S., Peschke, W., Vu, D.P. and Stewart, R.: Plastic film displays with NanoBlock IC drivers integrated by fluidic self assembly process. SID Conf. Digest 33, 726 (2002).CrossRefGoogle Scholar
105.Shi, Y., Bernkopf, J., Herrmann, S., Hermanns, A. and Choquette, D.: Polymer light-emitting diode displays driven by integrated NanoBlock IC drivers. SID Conf. Digest 33, 1092 (2002).CrossRefGoogle Scholar
106.Gelinck, G.H., Huitema, H.E.A., Van Veenendaal, E., Cantatore, E., Schrijnemakers, L., Van Der Putten, J.B.P.H., Geuns, T.C.T., Beenhakkers, M., Giesbers, J.B., Huisman, B-H., Meijer, E.J., Benito, E.M., Touwslager, F.J., Marsman, A.W., Van Rens, B.J.E. and De Leeuw, D.M.: Flexible active-matrix displays and shift registers based on solution-processed organic transistors. Nat. Mater. 3, 106 (2004).CrossRefGoogle ScholarPubMed
107. Epigem Ltd.; http://www.epigem.co. ukLtd.;.Google Scholar
108.Taussig, C., Mej, P., Jeans, A., Jackson, W., Perlov, C., Kim, H-J., Luo, H., Hamburgen, B., Jeffrey, F., Sell, C., Braymen, S. and Beacom, K. USDC Flexible Electronics conference, Phoenix, AZ, 10-12 Feb. 2004.Google Scholar
109.Baude, P.F., Ender, D.A., Kelley, T.W., Haase, M.A., Muyres, D.V. and Theiss, S.D. Organic semiconductor RFID transponders. IEDM Techn. Digest (7-10 Dec 2003, Washington, DC), paper #8.1.Google Scholar
110.Liu, C-Y., Pan, H-L., Fox, M.A. and Bard, A.J.: High-density nanosecond charge trapping in thin films of the photoconductor ZnODEP. Science 261, 897 (1993).CrossRefGoogle ScholarPubMed
111.Gudesen, H.G., Nordal, P.-E., Leistad, G.I., Electrically addressable passive device, method for electrical addressing of the same and uses of the device and the method. U.S. Patent No. 6,055,180 (25 Apr 2000).Google Scholar
112.Li, Q., Surthi, S., Mathur, G., Gowda, S., Misra, V., Sorenson, T.A., Tenent, R.C., Kuhr, W.G., Tamaru, S-I., Lindsey, J.S., Liu, Z. and Bocian, D.F.: Electrical characterization of redox-active molecular monolayers on SiO2 for memory applications. Appl. Phys. Lett. 83, 198 (2003).CrossRefGoogle Scholar
113.Ma, L., Liu, J., Pyo, S. and Yang, Y.: Organic bistable light-emitting devices. Appl. Phys. Lett. 80, 362 (2002).CrossRefGoogle Scholar
114.Zettacore, Actually (Ref. 113) currently has an active matrix structure similar to DRAMs, but they propose to develop passive matrix eventually.Google Scholar
115.Christensen, Clayton: The Innovator’s Dilemma: When New Technologies Cause Great Firms to Fail (Harvard Business, Cambridge, 1997).Google Scholar
116. The disruptive innovation wire, Jan/Feb 2002, Innosight LLC (http://www.innosight.com).Google Scholar
117. Available at Available at http://www.innosight.com.Google Scholar
119.http://www.xilinx.com/products/webace/wp112.pdf; white paper WP112(v1.0) February 23, 2000.Google Scholar
120.Rosenthal, S.: Checkout lower performance processors, too. Personal Instrumentation & Engineering News 10, 60 (1993).Google Scholar