Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T05:41:07.984Z Has data issue: false hasContentIssue false

Low-temperature oxidation of YBa2Cu3O6.0 with nitrogen dioxide

Published online by Cambridge University Press:  31 January 2011

Stephen A. Montzka
Affiliation:
Department of Chemistry and Biochemistry, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309–0215
Brooks M. Hybertson
Affiliation:
Department of Chemistry and Biochemistry, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309–0215
Robert M. Barkley
Affiliation:
Department of Chemistry and Biochemistry, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309–0215
Robert E. Sievers*
Affiliation:
Department of Chemistry and Biochemistry, and Cooperative Institute for Research in Environmental Sciences, University of Colorado, Boulder, Colorado 80309–0215
*
a)Address correspondence to this author; phone (303) 492–7943, fax (303) 492–1149.
Get access

Abstract

Nitrogen dioxide was used to oxidize nonsuperconducting, powdered YBa2Cu3O6.0 to form a material that exhibits the Meissner effect at liquid nitrogen temperature. Nitrogen dioxide treatment at 200 °C for 70 h results in a mixed-phase material containing superconducting YBa2Cu3O6.9 that exhibits onset of superconductivity at 91.5 K and a midpoint at 88 K. During a 70-h exposure of YBa2Cu3O6 to NO2 at 200 °C, a mixture of oxidation and degradation products is formed, including YBa2Cu3O6.9 (61% by weight) and Ba(NO3)2 (23% by weight). Heating the NO2-treated product to 900 °C results in the evolution of NO, NO2, and O2; cooling the sample and annealing at 400 °C in an O2 stream generates the superconducting oxide.

Type
Articles
Copyright
Copyright © Materials Research Society 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1Bednorz, J. G. and Miiller, K. A., Z. Phys. B 64, 189 (1986).CrossRefGoogle Scholar
2Wu, M. K., Ashburn, J. R., Torng, C. J., Hor, P. H., Meng, R. L., Gao, L., Huang, Z. J., Wang, Y. Q., and Chu, C. W., Phys. Rev. Lett. 58, 908 (1987).CrossRefGoogle Scholar
3Gallagher, P. K., O'Bryan, H. M., Sunshine, S. A., and Murphy, D. W., Mater. Res. Bull. XXII, 995 (1987).CrossRefGoogle Scholar
4Ginley, D. S., Nigrey, P. J., Venturini, E. L., Morosin, B., and Kwak, J. F., J. Mater. Res. 2, 732 (1987).CrossRefGoogle Scholar
5Koren, G., Gupta, A., and Baseman, R. J., Appl. Phys. Lett. 54, 1920 (1989).CrossRefGoogle Scholar
6Bagley, B. G., Greene, L. H., Tarascon, J., and Hull, G. W., Appl. Phys. Lett. 51, 622 (1987).CrossRefGoogle Scholar
7Yoshida, A., Tamura, H., Morohashi, S., and Hasuo, S., Appl. Phys. Lett. 53, 811 (1988).CrossRefGoogle Scholar
8Song, Y., Chen, X-D., Gaines, J. R., and Gilje, J. W., J. Mater. Res. 5, 27 (1990).CrossRefGoogle Scholar
9Tamura, H., Yoshida, A., Morohashi, S., and Hasuo, S., Appl. Phys. Lett. 52, 2183 (1988).CrossRefGoogle Scholar
10Gallagher, P. K., Grader, G. S., and O'Bryan, H. M., Mater. Res. Bull. XXIII, 1491 (1988).CrossRefGoogle Scholar
11Hwang, N. M., Bahng, G. W., Park, Y. K., Park, J. C., Moon, H. G., and Yoon, D. N., J. Mater. Sci. Lett. 8, 517 (1989).CrossRefGoogle Scholar
12Gao, Y., Merkle, K. L., Zhang, C., Balachandran, U., and Poeppel, R. B., J. Mater. Res. 5, 1363 (1990).CrossRefGoogle Scholar
13Sievers, R. E., Barkley, R. M., Hansen, B. N., Hybertson, B. M., McNamara, E. A., and Montzka, S. A., presented at International Superconductor Applications Convention, January 1113, 1989, San Francisco, CA.Google Scholar
14Montzka, S. A., Ph.D. Thesis, University of Colorado, 1988.Google Scholar
15Leary, K. J., Jacobson, H. W., Levoy, N. F., Lapalomento, R. A., Askew, T. R., Flippen, R. B., Keller, S. W., and Stacy, A. M., J. Mater. Res. 5, 22 (1990).CrossRefGoogle Scholar
16Tabata, K., Fukuda, H., Kohiki, S., Mizuno, N., and Misono, M., Chem. Lett. 799 (1988).CrossRefGoogle Scholar
17Arakawa, T. and Adachi, G., Mater. Res. Bull. XXIV, 529 (1989).CrossRefGoogle Scholar
18Montzka, S. A., Barkley, R. M., and Sievers, R. E., S. Afr. J. Chem. 42, 81 (1989).Google Scholar
19McNamara, E. A., Montzka, S. A., Barkley, R. M., and Sievers, R. E., J. Chromatogr. 452, 75 (1988).CrossRefGoogle Scholar
20Holland, G. F. and Stacy, A. M., Ace. Chem. Res. 21, 8 (1988).CrossRefGoogle Scholar
21Steinfink, H., Swinnea, J. S., Sui, Z. T., Hsu, H. M., and Goodenough, J. B., J. Amer. Chem. Soc. 109, 3348 (1987).CrossRefGoogle Scholar
22Tarascon, J. M., Barboux, P., Bagley, B. G., Greene, L. H., McKinnon, W. R., and Hull, G. W., in Chemistry of High Temperature Superconductors, edited by Nelson, D. L., Whittingham, M. S., and George, T. F. (American Chemical Society, Washington, DC, 1987), p. 198.CrossRefGoogle Scholar
23Meites, L., Anal. Chem. 24, 1618 (1952).CrossRefGoogle Scholar
24Nyarady, S. A., Barkley, R. M., and Sievers, R. E., Anal. Chem. 57, 2074 (1985).CrossRefGoogle Scholar
25Chen, D., Goldfarb, R. B., Nogués, J., and Rao, K. V., J. Appl. Phys. 63, 980 (1988).CrossRefGoogle Scholar