Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-24T16:52:05.906Z Has data issue: false hasContentIssue false

A low-temperature and low-cost method to produce high-quality epitaxial anatase TiO2 thin films

Published online by Cambridge University Press:  03 March 2011

Zhaoming Zhang*
Affiliation:
Australian Nuclear Science and Technology Organisation, Lucas Heights, NSW 2234, Australia
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Epitaxial anatase TiO2 thin films were successfully grown on lattice-matched SrTiO3 (001) substrates by a novel hydrothermal method at very low temperatures (120–200 °C). This method is extremely simple and inexpensive in that the SrTiO3 substrate itself provides the source material for the TiO2 film. X-ray diffraction confirmed the high crystallinity and phase purity of the anatase films. The epitaxial relationship between the film and the substrate was determined as (001)[100]anatase // (001)[100]SrTiO3. Atomic force microscopy revealed the average size of the anatase crystallites as approximately 50 to 200 nm.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hadjiivanov, K.I. and Klissurski, D.G.: Surface chemistry of titania (anatase) and titania-supported catalysts. Chem. Soc. Rev. 25, 61 (1996).CrossRefGoogle Scholar
2.Kavan, L., Grätzel, M., Gilbert, S.E., Klemenz, C., and Scheel, H.J.: Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118, 6716 (1996).CrossRefGoogle Scholar
3.Sumita, T., Yamaki, T., Yamamoto, S., and Miyashita, A.: Photo-induced surface charge separation of highly oriented TiO2 anatase and rutile thin films. Appl. Surf. Sci. 200, 21 (2002).CrossRefGoogle Scholar
4.O'Regan, B. and Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).CrossRefGoogle Scholar
5.Hagfeldt, A. and Grätzel, M.: Light-induced redox reactions in nanocrystalline systems. Chem. Rev. 95, 49 (1995).CrossRefGoogle Scholar
6.Huang, S.Y., Kavan, L., Exnar, I., and Grätzel, M.: Rocking chair lithium battery based on nanocrystalline TiO2 (anatase). J. Electrochem. Soc. 142 L142 (1995).CrossRefGoogle Scholar
7.Matsumoto, Y., Murakami, M., Shono, T., Hasegawa, T., Fukumura, T., Kawasaki, M., Ahmet, P., Chikyow, T., Koshihara, S., and Koinuma, H.: Room-temperature ferromagnetism in transparent transition metal-doped titanium dioxide. Science 291, 854 (2001).CrossRefGoogle ScholarPubMed
8.Sugimura, W., Yamazaki, A., Shigetani, H., Tanaka, J., and Mitsuhashi, T.: Anatase-type TiO2 thin films produced by lattice deformation. Jpn. J. Appl. Phys. 36, 7358 (1997).CrossRefGoogle Scholar
9.Murakami, M., Matsumoto, Y., Nakajima, K., Makino, T., Segawa, Y., Chikyow, T., Ahmet, P., Kawasaki, M., and Koinuma, H.: Anatase TiO2 thin films grown on lattice-matched LaAlO3 substrate by laser molecular-beam epitaxy. Appl. Phys. Lett. 78, 2664 (2001).CrossRefGoogle Scholar
10.Ong, C.K. and Wang, S.J.: In situ RHEED monitor of the growth of epitaxial anatase TiO2 thin films. Appl. Surf. Sci. 185, 47 (2001).CrossRefGoogle Scholar
11.Chen, S., Mason, M.G., Gysling, H.J., Paz-Pujalt, G.R., Blanton, T.N., Castro, T., Chen, K.M., Fictorie, C.P., Gladfelter, W.L., Franciosi, A., Cohen, P.I., and Evans, J.F.: Ultrahigh vacuum metalorganic chemical vapor deposition growth and in situ characterization of epitaxial TiO2 films. J. Vac. Sci. Technol. A 11, 2419 (1993).CrossRefGoogle Scholar
12.Kennedy, R.J. and Stampe, P.A.: The influence of lattice mismatch and film thickness on the growth of TiO2 on LaAlO3 and SrTiO3 substrates. J. Cryst. Growth 252, 333 (2003).CrossRefGoogle Scholar
13.Hsieh, C.C., Wu, K.H., Juang, J.Y., Uen, T.M., Lin, J-Y., and Gou, Y.S.: Monophasic TiO2 films deposited on SrTiO3 (100) by pulsed laser ablation. J. Appl. Phys. 92, 2518 (2002).CrossRefGoogle Scholar
14.Jeong, B-S., Budai, J.D., and Norton, D.P.: Epitaxial stabilization of single crystal anatase films via reactive sputter deposition. Thin Solid Films 422, 166 (2002).CrossRefGoogle Scholar
15.Jeong, B-S., Norton, D.P., Budai, J.D., and Jellison, G.E.: Epitaxial growth of anatase by reactive sputter deposition using water vapor as the oxidant. Thin Solid Films 446, 18 (2004).CrossRefGoogle Scholar
16.Imai, F., Kunimori, K., Manabe, T., Kumagai, T., and Nozoye, H.: Epitaxial growth of titanium dioxide thin films on MgO (100) single-crystal substrates by reactive deposition methods. Thin Solid Films 310, 184 (1997).CrossRefGoogle Scholar
17.Schuisky, M., Kukli, K., Aarik, J., Lu, J., and Hårsta, A.: Epitaxial growth of TiO2 films in a hydroxyl-free atomic layer deposition process. J. Cryst. Growth 235, 293 (2002).CrossRefGoogle Scholar
18.Schuisky, M., Hårsta, A., Aidla, A., Kukli, K., Kiisler, A-A., and Aarik, J.: Atomic layer chemical vapor deposition of TiO2–low temperature epitaxy of rutile and anatase. J. Electrochem. Soc. 147, 3319 (2000).CrossRefGoogle Scholar
19.Burnside, S.D., Shklover, V., Barbé, C., Comte, P., Arendse, F., Brooks, K., and Grätzel, M.: Self-organization of TiO2 nanoparticles in thin films. Chem. Mater. 10, 2419 (1998).CrossRefGoogle Scholar
20.Nesbitt, H.W., Bancroft, G.M., Fyfe, W.S., Karkhanis, S.N., Nishijima, A., and Shin, S.: Thermodynamic stability and kinetics of perovskite dissolution. Nature 289, 358 (1981).CrossRefGoogle Scholar
21.Kastrissios, T., Stephenson, M., Turner, P.S., and White, T.J.: Hydrothermal dissolution of perovskite: Implications for synroc formulation. J. Am. Ceram. Soc. 70 C-144 (1987).CrossRefGoogle Scholar
22.Burdett, J.K., Hughbanks, T., Miller, G.J., Richardson, J.W., and Smith, J.V.: Structural-electronic relationships in inorganic solids: Powder neutron diffraction studies of the rutile and anatase polymorphs of titanium dioxide at 15 and 295 K. J. Am. Chem. Soc. 109, 3639 (1987).CrossRefGoogle Scholar
23.Zhang, Z., Blackford, M.G., Lumpkin, G.R., and Vance, E.R.: Electron microscope studies of the dissolution mechanism of perovskite (CaTiO3) at hydrothermal temperatures, in Aust Ceram 2002 Proc., edited by Low, I.M. and Phillips, D.N. (Aust. Ceram. Soc., Perth, Australia, 2002), p. 55.Google Scholar