Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T13:51:38.988Z Has data issue: false hasContentIssue false

Low absorption magnesium aluminate spinel windows for high energy laser applications

Published online by Cambridge University Press:  28 July 2014

Guillermo Villalobos*
Affiliation:
Naval Research Laboratory, Code 5620, Washington DC 20375, USA
Shyam Bayya
Affiliation:
Naval Research Laboratory, Code 5620, Washington DC 20375, USA
Woohong Kim
Affiliation:
Naval Research Laboratory, Code 5620, Washington DC 20375, USA
Colin Baker
Affiliation:
Naval Research Laboratory, Code 5620, Washington DC 20375, USA
Jas Sanghera
Affiliation:
Naval Research Laboratory, Code 5620, Washington DC 20375, USA
Michael Hunt
Affiliation:
University Research Foundation, Greenbelt, Maryland 20770, USA
Bryan Sadowski
Affiliation:
Sotera Defense Solutions, Inc., Maryland 20701, USA
Fritz Miklos
Affiliation:
Sotera Defense Solutions, Inc., Maryland 20701, USA
Ishwar Aggarwal
Affiliation:
Sotera Defense Solutions, Inc., Maryland 20701, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

High energy laser (HEL) systems are currently being evaluated for various land, sea, and air based platforms. Some of these systems operate in or have to withstand harsh environment of sand storm, hurricane, and rain. The exit aperture on a HEL system operating in harsh environment can become the single point of failure. Current HEL systems operating in 1–2 µm wavelength use fused silica windows which are at risk of damage in the theater. Rugged window materials such as sapphire, ALON, and spinel are currently being evaluated as a potential replacement. One of the major parameters in window selection apart from its ruggedness is its absorption loss coefficient at laser wavelength. This paper reports on 3 different methods to reduce absorption loss in spinel ceramic from 100,000 ppm/cm down to 75 ppm/cm. The results are compared with ALON and sapphire.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Bayya, S.S., Chin, G.D., Sanghera, J.S., and Aggarwal, I.D.: Germanate glass as a window for high energy laser systems. Opt. Express 14(24), 1168711693 (2006).CrossRefGoogle Scholar
Klein, C.A.: Figures of merit for high-energy laser-window materials: Thermal lensing and thermal stresses. Proc. SPIE 6403. Laser-Induced Damage in Optical Materials, 640308, 2006. doi: 10.1117/12.695638.Google Scholar
Billman, K.W., Tran, D.C., Levin, K.H., Daigneault, S.M., and Edwards, N.J.: Progress toward an athermal HEL optical window. Proc. SPIE 5647, 207223 (2005).CrossRefGoogle Scholar
Browder, J.S., Ballard, S.S., and Klocek, P.: Physical properties of crystalline infrared materials. In Handbook of Infrared Materials, Klocek, P., ed.; Mercel Dekker Inc. Publications, 1991; pp. 193425.Google Scholar
Harris, D.C.: Materials for Infrared Windows and Domes: Properties and Performance (SPIE Press, Bellingham, WA, 1999).CrossRefGoogle Scholar
Moynihan, C.T. and Loehr, S.R.: Chemical durability of fluoride glasses. Mater. Sci. Forum 3233, 243254 (1988).Google Scholar
Villalobos, G.R., Sanghera, J.S., and Aggarwal, I.D.: Degradation of magnesium aluminum spinel by lithium fluoride sintering aid. J. Am. Ceram. Soc. 88(5), 13211322 (2005). doi: 10.1111/j.1551-2916.2005.00209.x.CrossRefGoogle Scholar
Reimanis, I. and Kleebe, H-J.: A review of the sintering and microstructure development of transparent spinel (MgAl2O4). J. Am. Ceram. Soc. 92(7), 14721480 (2009). doi: 10.1111/j.1551-2916.2009.03108.x.CrossRefGoogle Scholar
Gilde, G., Patel, P., Patterson, P., Blodgett, D., Duncan, D., and Hahn, D.: Evaluation of hot pressing and hot isostatic pressing parameters on the optical properties of spinel. J. Am. Ceram. Soc. 88(10), 27472751 (2005).CrossRefGoogle Scholar
Patterson, M.C.L., Roy, D.W., and Gilde, G.: An investigation of the transmission properties and ballistic performance of hot pressed spinel. In Ceramic Transactions; McCauley, J.W., Crowson, A., Gooch, W.A. Jr., Rajendran, A.M., Bless, S.J., Logan, K.V., Normandia, M., and Wax, S., eds.; American Ceramic Society, Westerville, OH, Vol. 134, 2002; pp. 595608.Google Scholar
Roy, D.W. and Hastert, J.L.: Polycrystalline MgAl2O4 spinel for high temperature windows. Ceram. Eng. Sci. Proc. 4(7–8), 502509 (1983).CrossRefGoogle Scholar
Harris, D.C., Johnson, L.F., Seaver, R., Lewis, T., Turri, G., Bass, M., Zelmon, D., and Haynes, N.: Optical and thermal properties of spinel with revised (increased) absorption at 4 to 5 μm wavelengths and comparison to sapphire. Opt. Eng. 52(8), 112 (2013). doi: 10.1117.1.OE.52.8.087113.CrossRefGoogle Scholar
Tropf, W.J. and Thomas, M.E.: Magnesium aluminum spinel (MgAl2O4). In Handbook of Optical Constants of Solids II, Palik, E.D., ed.; Academic Press, Boston 1991; pp. 883897.Google Scholar
Wood, R.M.: Laser-induced Damage of Optical Materials (Institute of Physics Publishing, Bristol and Philadelphia, 2003).CrossRefGoogle Scholar
Koechner, W.: Solid-State Laser Engineering: 3rd Completely and Revised Edition (Springer-Verlag, Berlin, 1992).CrossRefGoogle Scholar
Kim, W., Baker, C., Villalobos, G., Frantz, J., Shaw, B., Lutz, A., Sadowski, B., Kung, F., Hunt, M., Sanghera, J., and Aggarwal, I.: Synthesis of high purity Yb3+-doped Lu2O3 powder for high power Solid-state lasers. J. Am. Ceram. Soc. 94(9), 30013005 (2011).CrossRefGoogle Scholar
Villalobos, G.R., Sanghera, J.S., Aggarwal, I.D., and Miklos, R.: Analysis of scattering Sites in transparent magnesium aluminate spinel. In Advances in Ceramic Armor, Swab, J.J., ed.; Ceramic Engineering and Science Proceedings, Vol. 26, (7) January 23-28, Cocoa Beach, Florida, 2005. (John Wiley & Sons, Inc., Hoboken, NJ, 2005).Google Scholar
Reimanis, I.E., Rozenburg, K., Kleebe, H-J., and Cook, R.L.: Fabrication of transparent spinel: The role of impurities. In Window and Dome Technologies and Materials IX, SPIE Conference Proceedings, Tustison, R.W., ed.; SPIE: Bellingham, WA, 2005; pp. 4855.CrossRefGoogle Scholar
Villalobos, G.R., Sanghera, J.S., Bayya, S.S., and Aggarwal, I.D.: Spinel and process for making same. United States Patent No. 7,611,661. 2009.Google Scholar
Alexandrovski, A., Fejer, M., Markosian, A., and Route, R.: Photothermal common-path interferometry (PCI): New developments. Proc. SPIE 7193, 7193071942 (2009).CrossRefGoogle Scholar
Villalobos, G.R., Bayya, S.S., Kim, W., Sanghera, J.S., Sadowski, B., Miklos, R., Florea, C., and Aggarwal, I.D.: Polished spinel directly from the hot press. In Advances in Ceramic Armor VIII, Swab, J.J., Halbig, M., and Mathur, S., ed.; John Wiley & Sons, Inc., Hoboken, NJ, 2012. doi: 10.1002/9781118217498.ch9.CrossRefGoogle Scholar
Aigueperse, J., Mollard, P., Devilliers, D., Chemla, M., Faron, R., Romano, R., and Cuer, J.P.: Fluorine compounds, inorganic. In Ullmann’s Encyclopedia of Industrial Chemistry; Wiley-VCH: Weinheim, 2005. doi: 10.1002/14356007.a11_307.Google Scholar
Shannon, R.D.: Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr., Sect. A 32, 751767 (1976). doi: 10.1107/S0567739476001551.CrossRefGoogle Scholar