Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-12-01T01:26:49.205Z Has data issue: false hasContentIssue false

Long-term irradiation effects on gamma-irradiated Nylon 6,12 fibers

Published online by Cambridge University Press:  31 January 2011

Carmina Menchaca-Campos*
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico
Gonzalo Martínez-Barrera
Affiliation:
Laboratorio de Investigación y Desarrollo de Materiales Avanzados (LIDMA), Facultad de Química, Universidad Autónoma del Estado de México, Km. 12 de la carretera Toluca-Atlacomulco, San Cayetano 50200, Mexico
M.C. Resendiz
Affiliation:
Centro de Investigación en Ingeniería y Ciencias Aplicadas (CIICAp), Universidad Autónoma del Estado de Morelos, Cuernavaca 62210, Morelos, Mexico
V.H. Lara
Affiliation:
Departamento de Química, Universidad Autónoma Metropolitana-Iztapalapa, Iztapalapa 09340, México
Witold Brostow
Affiliation:
Laboratory of Advanced Polymers & Optimized Materials (LAPOM), Department of Materials Science and Engineering, University of North Texas, Denton, Texas 76203-5310
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Long-term effects on Nylon 6,12 crystalline fibers irradiated six years ago have been determined, including chemical structure and morphology, and their relationship with storage time. Results from x-ray diffraction, small-angle x-ray scattering, scanning electron microscopy, and atomic force microscopy are reported for those fibers and for freshly irradiated ones. Some results for non-irradiated samples are included for comparison. Changes in the shape and size of the crystals (crystallinity degree) are found; the crystallite size increases with storage time. Both surface and bulk changes are seen in the morphology. Surface damage increases with storage time. Changes observed can be attributed to irradiation causing chain scission, which, in turn, causes crystal reorganization. The present results reinforce interpretation of earlier results obtained for concretes reinforced with irradiated Nylon fibers.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Dole, M.: Chemistry and physics of radiation dosimetry in Report of the Symposium IX US Army Chemical Center Adelphi, MD 1950Google Scholar
2Charlesby, A.: Cross-linking of polyethylene by pile radiation. Proc. Roy. Soc. (London) A 215, 187 1952Google Scholar
3Fink, D.: Fundamentals of Ion-irradiated Polymers Springer; Berlin Heidelberg, New York 2004CrossRefGoogle Scholar
4Giacometti, J.A., Oliveira, O.N. Jr.Corona charging of polymers. IEEE Trans. Diel. Elec. Insul. 27, 924 1992CrossRefGoogle Scholar
5Zucolotto, V., He, J-A., Constantino, C.J.L., Barbosa Neto, N.M., Rodrigues, J.J. Jr., Mendonça, C.R., Zilio, S.C., Li, L., Aroca, R.F., Oliveira, O.N. Jr.Kumar, J.: Mechanisms of surface-relief gratings formation in layer-by-layer films from azodyes. Polymer 44, 6129 2003CrossRefGoogle Scholar
6Brostow, W.Jaklewicz, M.: Tribology of a polymeric molecular composite: Effects of magnetic field orientation. J. Mater. Res. 19, 1038 2004Google Scholar
7Patel, G.N.Keller, A.: Crystallinity and the effect of ionizing radiation in polyethylene. I. Crosslinking and the crystal core. J. Polym. Sci. Phys. 13, 303 1975CrossRefGoogle Scholar
8Jenkins, H.Keller, A.: Radiation-induced changes in physical properties of bulk polyethylene. I. Effect of crystallization conditions. J. Macromol. Sci., Phys., B 11, 301 1975CrossRefGoogle Scholar
9Ungar, G.Keller, A.: Effect of radiation on the crystals of polyethylene and paraffins: I. Formation of the hexagonal lattice and the destruction of crystallinity in polyethylene. Polymer 21, 1273 1980Google Scholar
10Hoseman, R., Loboda-Cackovic, J.Cackovic, H.: Affine deformation of linear polyethylene during stretching and affine transformation to the original shape in the liquid state. J. Mater. Sci. 7, 963 1972CrossRefGoogle Scholar
11Loboda-Cackovic, J., Cackovic, H.Hoseman, R.: Structural changes in paracrystallites of drawn polyethylene by irradiation. Colloid Polym. Sci. 252, 738 1974Google Scholar
12Olivares, M., López-Valdivia, H., Vázquez-Polo, G., Carrasco, H., Álvarez-Castillo, A., Oliva, E.Castaño, V.M.: Studies on the effects of γ-radiation on the mechanical properties of nylon 6-12 fibers. Polym. Bull. 36, 629 1996CrossRefGoogle Scholar
13Melchiors, M., Keul, H.Höcker, H.: Depolymerization of Poly[(R)-3-hydroxybutyrate] to cyclic oligomers and polymerization of the cyclic trimer: an example of thermodynamic recycling. Macromolecules 29, 6442 1996CrossRefGoogle Scholar
14Olivares, M., López-Valdivia, H., Vázquez-Polo, G., Mondragón, M.A., Lima, R., Martínez, E.Castaño, V.M.: FT-Raman analysis of the effects of γ-radiation on nylon 6-12 filaments. Polym. Bull. 37, 221 1996CrossRefGoogle Scholar
15Olivares, M., Mondragón, M.A., Vázquez-Polo, G., Martínez, E.Castaño, V.M.: FT-Raman studies of semi-crystalline nylon 6, 12 filaments. Int. J. Polym. Mater. 40, 213 1998CrossRefGoogle Scholar
16Brostow, W., Castaño, V.M., Horta, J.Martinez-Barrera, G.: Gamma irradiation effects on impact strength and thermal properties of SBR-toughened polystyrene. Polimery 49, 9 2004CrossRefGoogle Scholar
17Martinez-Barrera, G., Menchaca, C., Pietkiewicz, D.Brostow, W.: Polystyrene + styrene/butadiene blends: Mechanical and morphological properties. Mater. Sci. Medziagotyra 10, 166 2004Google Scholar
18Martinez-Barrera, G., Menchaca-Campos, C., Hernandez-Lopez, S., Vigueras-Santiago, E.Brostow, W.: Concrete reinforced with irradiated nylon fibers. J. Mater. Res. 21, 484 2006Google Scholar
19Martinez-Barrera, G., Espinosa-Pesquiera, M.E.Brostow, W.: Concrete + polyester + CaCO3: Mechanics and morphology. e-Polymers 083, 1 2007Google Scholar
20Menchaca, C., Álvarez-Castillo, A., Martínez-Barrera, G., López-Valdivia, H., Carrasco, H.Castaño, V.M.: Mechanisms for the modification of nylon 6,12 by gamma irradiation. Int. J. Mater. Prod. Technol. 19, 521 2003CrossRefGoogle Scholar
21Alvarez, G., Bonett, R.D.Guérin, D.M.: Statistical inference, size distributions and peak broadening in finite crystals. Powder Diff. 2, 220 1987Google Scholar
22Bonetto, R.D., Viturr, H.R.Alvarez, A.G.: XTL-SIZE: A computer program for crystal-size-distribution calculation from x-ray diffraction line broadening. J. Appl. Crystallogr. 23, 136 1990Google Scholar
23Biangardi, H.J.: Brill transition of polyamide 6,12. J. Macromol. Sci., Phys., B 29, 139 1990CrossRefGoogle Scholar
24Gedde, U.W.: Polymer Physics Springer Berlin, New York 2002Google Scholar
25Lucas, E.F., Soares, B.G.Monteiro, E.: Characterization of polymers, (e-papers, Rio de Janeiro, 2001)Google Scholar
26Glatter, O.: Computation of distance distribution functions and scattering functions of models of small angle scattering experiments. Acta Phys. Aust. 52, 243 1980Google Scholar
27Glatter, O.: Convolution square root of band-limited symmetrical functions and its application to small-angle scattering data. J. Appl. Crystallogr. 14, 101 1981Google Scholar
28Martin, J.E., Wilcoxon, J.Adolf, D.: Critical exponents for the sol-gel transition. Phys. Rev. A 36, 1803 1987Google Scholar
29de Gennes, P-G.Introduction to Polymer Dynamics Cambridge University Press 1990Google Scholar
30Kopczynska, A.Ehrenstein, G.W.: Polymeric surfaces and their true surface tension in solids and melts. J. Mater. Ed. 29, 325 2007Google Scholar
31Komanduri, R., Chandrasekaran, N.Raff, I.M.: MD simulation of nanometric cutting of single crystal aluminum—Effect of crystal orientation and direction of cutting. Wear 240, 113 2000Google Scholar
32Brostow, W., Hinze, J.A.Simões, R.: Tribological behavior of polymers simulated by molecular dynamics. J. Mater. Res. 19, 851 2004Google Scholar
33Brostow, W.Simões, R.: Tribological and mechanical behavior of polymers simulated by molecular dynamics. J. Mater. Ed. 27, 19 2005Google Scholar
34Menchaca, C., Álvarez-Castillo, A., López-Valdivia, H., Carrasco, H., Lara, V.H., Bosch, P.Castaño, V.M.: Radiation-induced morphological changes in polyamides fibers. Int. J. Polym. Mater. 51, 769 2002Google Scholar
35Rabello, M.: Putting Additives into Polymers Artliber São Paulo 2000 Chap. 10,Google Scholar