Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2025-01-02T20:06:44.909Z Has data issue: false hasContentIssue false

Laser ablation synthesis and optical properties of copper nanoparticles

Published online by Cambridge University Press:  04 September 2013

Amir Reza Sadrolhosseini*
Affiliation:
Wireless and Photonics Networks Research Center (WiPNet), Faculty of Engineering, University Putra Malaysia, 43400 UPM Serdang, Malaysia
Ahmad Shukri Bin Muhammad Noor*
Affiliation:
Wireless and Photonics Networks Research Center (WiPNet), Faculty of Engineering, University Putra Malaysia, 43400 UPM Serdang, Malaysia
Kamyar Shameli
Affiliation:
Department of Chemistry, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Malaysia
Ghazaleh Mamdoohi
Affiliation:
Wireless and Photonics Networks Research Center (WiPNet), Faculty of Engineering University Putra Malaysia, 43400 UPM Serdang, Malaysia
Mohod Maarof Moksin
Affiliation:
Department of Physics, Faculty of Science, University Putra Malaysia, 43400 UPM Serdang, Malaysia
Mohod Adzir Mahdi
Affiliation:
Wireless and Photonics Networks Research Center (WiPNet), Faculty of Engineering, University, Putra Malaysia, 43400 UPM Serdang, Malaysia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Copper nanoparticles (Cu-NPs) were prepared in virgin coconut oil (VCO) using a laser ablation technique. A copper plate immersed in VCO was irradiated by an Nd:YAG laser at wave lengths of 532 nm for 5, 10, 20, and 30 min. By increasing the ablation time from 5 to 30 min, the particle size inside the nanofluid decreased from 11 to 4 nm and the concentration, refractive index, and the volume fraction of copper nanofluid increased. The Cu-NPs were capped with oxygen from hydroxyl groups of the VCO, as verified by Fourier transform infrared spectroscopy. The refractive indices, obtained by analysis of the surface plasmon resonance signals increased from 1.44371 + 0.0034i to 1.44387 + 0.0142i, and special self-phase modulation due to nonlinearity effect was investigated.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Henglein, A.: Small-particle research: Physicochemical properties of extremely small colloidal metal and semiconductor particles. Chem. Rev. 89(8), 1861 (1989).CrossRefGoogle Scholar
Templeton, A.C., Wuelfing, W.P., and Murray, R.W.: Monolayer protected cluster molecules. Acc. Chem. Res. 33(1), 27 (2000).CrossRefGoogle ScholarPubMed
Chen, S. and Yang, Y.: Magnetoelectrochemistry of gold nanoparticle quantized capacitance charging. J. Am. Chem. Soc. 124(19), 5280 (2002).CrossRefGoogle ScholarPubMed
Teng, X., Black, D., Watkins, N.J., Gao, Y., and Yang, H.: Platinum-maghemite core-shell nanoparticles using a sequential synthesis. Nano Lett. 3(2), 261 (2003).CrossRefGoogle Scholar
Peyser, L.A., Vinson, A.E., Bartko, A.P., and Dickson, R.W.: Photoactivated fluorescence from individual silver nanoclusters. Science 291, 103 (2001).CrossRefGoogle ScholarPubMed
Zhang, X., Young, M.A., Lyandres, O., and Van Duyne, R.P.: Rapid detection of an anthrax biomarker by surface enhanced Raman spectroscopy. J. Am. Chem. Soc. 127(12), 4484 (2005).CrossRefGoogle ScholarPubMed
Tessier, P.M., Velev, O.D., Kalambur, A.T., Rabolt, J.F., Lenhoff, A.M., and Kaler, E.W.: Assembly of gold nanostructured films templated by colloidal crystals and use in surface enhanced raman spectroscopy. J. Am. Chem. Soc. 122(39), 9554 (2000).CrossRefGoogle Scholar
Giuffrida, S., Costanzo, L.L., Ventimiglia, G., and Bongiorno, C.: Photochemical synthesis of copper nanoparticles incorporated in poly(vinyl pyrrolidone). J. Nanopart. Res. 10, 1183 (2008).CrossRefGoogle Scholar
Kim, D., Yoo, S.M., Park, T.J., Yoshikaw, H., Tamiy, E., Park, J.Y., and Lee, S.Y.: Plasmonic properties of the multispot copper-capped nanoparticle array chip and its application to optical biosensors for pathogen detection of multiplex DNAs. Anal. Chem. 83, 6215 (2011).CrossRefGoogle ScholarPubMed
Jackson, G.E., Mkhonta-Gama, L., Voye, A., and Kelly, M.: Design of copper-based anti inflammatory drugs. J. Inorg. Biochem. 79, 147 (2000).CrossRefGoogle ScholarPubMed
Szymański, P., Frączek, T., Markowicz, M., and Mikiciuk-Olasik, E.: Development of copper based drugs, radiopharmaceuticals and medical materials. Biometals 25(6), 1089 (2012).CrossRefGoogle ScholarPubMed
Deng, D., Cheng, Y., Jin, Y., Qia, T., and Xiao, F.: Antioxidative effect of lactic acid-stabilized copper nanoparticles prepared in aqueous solution. J. Mater. Chem. 22, 23989 (2012).CrossRefGoogle Scholar
Tuorkey, M.J. and Abdul-Aziz, K.K.: A pioneer study on the anti-ulcer activities of copper nicotinate complex [CuCl (HNA)2] in experimental gastric ulcer induced by aspirin-pylorus [corrected] ligation model (Shay model). Biomed. Pharmacother. 63(3), 194 (2009).CrossRefGoogle Scholar
Bilgin, M.D., Elçin, A.E., and Elçin, Y.M.: Topical use of liposomal copper palmitate formulation blocks porphyrin-induced photosensitivity in rats. J. Photochem. Photobiol., B 80, 107 (2005).CrossRefGoogle ScholarPubMed
Zamiri, R., Zakaria, A., Ahangar, H.A., Sadrolhosseini, A.R., and Mahdi, M.A.: Fabrication of silver nanoparticles dispersed in palm oil using laser ablation. Int. J. Mol. Sci. 11, 4764 (2010).CrossRefGoogle ScholarPubMed
Zamiri, R., Azmi, Z., Sadrolhosseini, A.R., Ahangar, H.A., Zaidan, A.W., and Mahdi, M.A.: Preparation of silver nanoparticles in virgin coconut oil using laser ablation. Inter. J. Nanomed. 6, 71 (2011).CrossRefGoogle ScholarPubMed
da Silva, E.C., da Silva, M., Meneghetti, S., Machado, G., Alencar, M., Hickmann, J., and Meneghetti, M.: Synthesis of colloids based on gold nanoparticles dispersed in castor oil. J. Nanopart. Res. 10, 201 (2008).CrossRefGoogle Scholar
Wu, N., Fu, L., Aslam, M., Wong, K., and Dravid, V.: Interaction of fatty acid monolayers with cobalt nanoparticles. Nano Lett. 4, 383 (2004).CrossRefGoogle Scholar
Mansor, T.S.T., Che Man, Y.B., Shuhaimi, M., Abdul Afiq, M.J., and Ku Nurul, F.K.M.: Physicochemical properties of virgin coconut oil extracted from different processing methods. Inter. Food Res. J. 19(3), 837 (2012).Google Scholar
Enig, M.: Definition of virgin coconut oil.http://www.bio-asli.comGoogle Scholar
John, S.: The benefits of virgin coconut oil, 2012.http://www.freemalaysiatoday.comGoogle Scholar
Zakaria, Z.A., Rofiee, M.S., Somchit, M.N., Zuraini, A., Sulaiman, M.R., Teh, L.K., Salleh, M.Z., and Long, K.: Hepatoprotective activity of dried- and fermented-processed virgin coconut oil. Evid. Based Complement. Altern. Med. 2011, 142739 (2011). DOI: 10.1155/2011/142739.CrossRefGoogle ScholarPubMed
Raveendran, P., Fu, J., and Wallen, S.L.: Completely “Green” synthesis and stabilization of metal nanoparticles. J. Am. Chem. Soc. 125(46), 13940 (2003).CrossRefGoogle ScholarPubMed
Loginov, A.V., Gorbunova, V.V., and Boitsova, T.B.: Photochemical synthesis and properties of colloidal copper, silver and gold adsorbed on quartz. J. Nanopart. Res. 4(3), 193 (2002).CrossRefGoogle Scholar
Giuffrida, S., Condorelli, G.G., Costanzo, L.L, Fragalà, I.L., Ventimiglia, G., and Vecchio, G.: Photochemical mechanism of the formation of nanometer-sized copper by UV irradiation of ethanol bis(2,4-pentandionato) copper(II) solutions. Chem. Mater. 16, 1260 (2004).CrossRefGoogle Scholar
Giuffrida, S., Condorelli, G.G., Costanzo, L.L., Ventimiglia, G., Lo Nigro, R., Favazza, M., Votrico, E., Bongiorno, C., and Fragalà, I.L.: Nickel nanostructured materials from liquid phase photodeposition. J. Nanopart. Res. 9, 611 (2007).CrossRefGoogle Scholar
Jiang, L.P., Wang, A.N., Zhao, Y., Zhang, J.R., and Zhu, J.J.: A novel route for the preparation of monodisperse silver nanoparticles via a pulsed sonoelectrochemical technique. Inorg. Chem. Commun. 7, 506 (2004).CrossRefGoogle Scholar
Haas, I., Shanmugam, S., and Gedanken, A.: Pulsed sonoelectrochemical synthesis of size controlled copper nanoparticles stabilized by poly(N-vinylpyrrolidone). J. Phys. Chem. B 110(34), 16947 (2006).CrossRefGoogle ScholarPubMed
Chawla, A.K. and Chandra, R.: Synthesis and structural characterization of nanostructured copper. J. Nanopart. Res. 11, 297 (2009).CrossRefGoogle Scholar
Takeshi, T., Iryo, K., Nishimura, Y., and Tsuji, M.: Preparation of metal colloids by a laser ablation technique in solution: Influence of laser wavelength on the ablation efficiency (II). J. Photochem. Photobiol., A 145(3), 201 (2001).Google Scholar
Swarnkar, R.K., Singh, S.C., and Gopal, R.: Effect of aging on copper nanoparticles synthesized by pulsed laser ablation in water: Structural and optical characterizations. Bull. Mater. Sci. 34(7), 1363 (2011).CrossRefGoogle Scholar
Aye, L.H., Choopun, S., and Chairuangsri, T.: Preparation of nanoparticles by laser ablation on copper target in distilled water. Adv. Mater. Res. 9394, 83 (2010).CrossRefGoogle Scholar
Kazakevich, P.V., Voronov, V.V., Simakin, A.V., and Shafeev, G.A.: Production of copper and brass nanoparticles upon laser ablation in liquids. Quantum Electron. 34(10), 951956 (2004).CrossRefGoogle Scholar
Muniz-Miranda, M., Gellini, C., and Giorgetti, E.: Surface-enhanced raman scattering from copper nanoparticles obtained by laser ablation. J. Phys. Chem. C 115, 5021 (2011).CrossRefGoogle Scholar
Malyavantham, G., O’Brien, D.T., Becker, M.F., Keto, J.W., and Kovar, D.: Au–Cu nanoparticles produced by laser ablation of mixtures of Au and Cu microparticles. J. Nanopart. Res. 6, 661 (2004).CrossRefGoogle Scholar
Kabashin, A.V. and Meunier, M.: Recent Advances in Laser Processing Material (Elsevier, Amsterdam, 2006), p. 1.Google Scholar
Sylvestre, J.P., Kabashin, A.V., Sacher, E., Meunier, M., and Luong, J.H.T.: Stabilization and size control of gold nanoparticles during laser ablation in aqueous cyclodextrins. J. Am. Chem. Soc. 12, 7176 (2004).CrossRefGoogle Scholar
Sylvestre, J.P., Kabashin, A.V., Sacher, E., and Meunier, M.: Femtosecond laser ablation of gold in water: Influence of the laser-produced plasma on the nanoparticle size distribution. Appl. Phys. A 80, 753 (2005).CrossRefGoogle Scholar
Hahn, A., Barcikowski, S., and Chichkov, B.N.: Influences on nanoparticle production during pulsed laser ablation. J. Laser Micro/Nanoeng. 3(2), 7377 (2008).CrossRefGoogle Scholar
Mafune´, F., Kohno, J.Y., Takeda, Y., Kondow, T., and Sawabe, H.: Structure and stability of silver nanoparticles in aqueous solution produced by laser ablation. J. Phys. Chem. B 104, 8333 (2000).CrossRefGoogle Scholar
Besner, S., Kabashin, A.V., Winnik, F.W., and Meunier, M.: Ultrafast laser based “green” synthesis of non-toxic nanoparticles in aqueous solutions. Appl. Phys. A 93, 955 (2008).CrossRefGoogle Scholar
Jaaskelainen, A.J., Peiponen, K.E., and Raty, J.A.: On reflectometric measurement of a refractive index of milk. J. Dairy Sci. 84, 38 (2001).CrossRefGoogle Scholar
Kabashin, A.V. and Meunier, M.: Synthesis of colloidal nanoparticles during femtosecond laser ablation of gold in water. J. Appl. Phys. 94, 7941 (2003).CrossRefGoogle Scholar
Homola, J.: Surface Plasmon Resonance Based Sensors (Springer-Verlag, Berlin, Heidelberg, 2006).CrossRefGoogle Scholar
Sadrolhosseini, A.R., Moksin, M.M., Yunus, W.M.M., and Talib, Z.A.: Surface plasmon resonance determination of methanol concentration during alkaline transestrification. ARPN J. Eng. Appl. Sci. 5(9), 54 (2010).Google Scholar
Sharma, K.K.: Optics (Academic Press, San Diego, California, 2006).Google Scholar
Sadrolhosseini, A.R., Moksin, M.M., Yunus, W.M.M., Talib, Z.A., and Abdi, M.M.: Surface plasmon resonance detection of copper corrosion in biodiesel using polypyrrole–chitosan layer sensor. Opt. Rev. 18(4), 331 (2011).CrossRefGoogle Scholar
Young Kim, K.: Plasmonics - principles and applications, in Application of Surface Plasmon Resonance Based Metal Nanoparticles, edited by Sadrolhosseini, A.R., Noor, A.S.M., and Moksin, M.M. (Intech, Rijeka, Croatia, 2012).Google Scholar
Deng, L., He, K., Zhou, T., and Li, C.: Formation and evolution of far field diffraction patterns of divergent and convergent gaussian beams passing through self-focusing and self-defocusing media. J. Opt. A: Pure Appl. Opt. 7, 409 (2005).CrossRefGoogle Scholar
Yang, G.: Laser Ablation in Liquids, 1st ed. (Pan Stanford Publishing, Temasek Boulevard, Singapore, 2012), p. 341.CrossRefGoogle Scholar
Nasirian, A.: Synthesis and characterization of Cu nanoparticles and studying of their catalytic properties. Int. J. Nano Dim. 2(3), 159 (2012).Google Scholar
Ono, H., Igarashi, Y., and Harato, Y.: Self-diffraction pattern formation in liquid crystale on dye-doped polymer surface. Mol. Cryst. Liq. Cryst. 325, 137 (1998).CrossRefGoogle Scholar
Gu, Y.Z., Liang, Z.J., and Gan, F.X.: Self-diffraction and optical limiting properties of organically modified sol-gel material containing palladium-octaisopentyloxyphthalocyanine under cw laser illumination. Opt. Mater. 17, 471 (2001).CrossRefGoogle Scholar
Zamiri, R., Azmi, B.Z., Darroudi, M., Sadrolhosseini, A.R., Husin, M.S., Zaidan, A.W., and Mahdi, M.A.: Preparation of starch stabilized silver nanoparticles with spatial self-phase modulation properties by laser ablation technique. Appl. Phys. A 102(1), 189194 (2010). DOI: 10.1007/s00339-010-6129-7CrossRefGoogle Scholar
Zamiri, R., Zakaria, A., Ahmad, M., Sadrolhosseini, A.R., Shameli, K., Darroudi, M., and Mahdi, M.A.: Investigation of spatial self-phase modulation of silver nanoparticles in clay suspension. Optik 122, 836 (2011).CrossRefGoogle Scholar