Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-18T11:50:05.483Z Has data issue: false hasContentIssue false

Kinetically driven selective growth of InAs quantum dots on GaAs

Published online by Cambridge University Press:  22 November 2013

Fabrizio Arciprete*
Affiliation:
Dipartimento di Fisica, Università di Roma “Tor Vergata,” Via della Ricerca Scientifica 1, I-00133 Roma, Italy
Ernesto Placidi
Affiliation:
Dipartimento di Fisica, Università di Roma “Tor Vergata,” Via della Ricerca Scientifica 1, I-00133 Roma, Italy; and Consiglio Nazionale delle Ricerche – Istituto di Struttura della materia, Via Fosso del Cavaliere 100, I-00133 Roma, Italy
Rita Magri
Affiliation:
Dipartimento di Fisica, Università di Modena e Reggio Emilia, and Centro S3 CNR-Istituto, Nanoscienze, Via Campi 213/A, 4100 Modena, Italy
Davide Del Gaudio
Affiliation:
Dipartimento di Fisica, Università di Roma “Tor Vergata,” Via della Ricerca Scientifica 1, I-00133 Roma, Italy
Fulvia Patella
Affiliation:
Dipartimento di Fisica, Università di Roma “Tor Vergata,” Via della Ricerca Scientifica 1, I-00133 Roma, Italy
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We show that, by changing and tuning the direction of the As flux on a rippled substrate, at temperatures higher than 530 °C and high As/In flux ratio, a selective growth of InAs dots can be obtained on GaAs. This is an undisclosed effect related to the Arsenic flux in the molecular beam epitaxial growth of InAs quantum dots (QDs) on GaAs(001). This effect cannot be explained by a shadowing effect, due to the gentle slopes of the mounds (1–3°), and reveals instead that As plays a fundamental role at these growth conditions. We have developed a kinetic model, which takes into account the coupling between cations and anions, and found that the very small surface gradient in the anion flux, due to the oblique evaporation on the mounded surface, is responsible for a massive drain of cations toward the surface anion-rich areas, thus generating the selective growth of QDs.

Type
Invited Feature Paper
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

b)

Present address: Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136.

This paper has been selected as an Invited Feature Paper.

References

REFERENCES

Petroff, P.M.: Semiconductor self-assembled quantum dots: Present status and future trends. Adv. Mater. 23, 2372 (2011).Google Scholar
Dousse, A., Suffczynski, J., Beveratos, A., Krebs, O., Lemaître, A., Sagnes, I., Bloch, J., Voisin, P., and Senellart, P.: Ultrabright source of entangled photon pairs. Nature 466, 217 (2010).Google Scholar
Trotta, R., Zallo, E., Ortix, C., Atkinson, P., Plumhof, J.D., Van den Brink, J., Rastelli, A., and Schmidt, O.G.: Universal recovery of the energy-level degeneracy of bright excitons in InGaAs quantum dots without a structure symmetry. Phys. Rev. Lett. 109, 147401 (2012).Google Scholar
Kiravittaya, S., Rastelli, A., and Schmidt, O.G.: Advanced quantum dot configurations. Rep. Prog. Phys. 72, 046502 (2009).Google Scholar
Yang, B., Liu, F., and Lagally, M.G.: Local strain-mediated chemical potential control of quantum dot self-organization in heteroepitaxy. Phys. Rev. Lett. 92, 025502 (2004).Google Scholar
Patella, F., Arciprete, F., Placidi, E., Fanfoni, M., Balzarotti, A., Vinattieri, A., Cavigli, L., Abbarchi, M., Gurioli, M., and Lunghi, L.: Single quantum dot emission by nanoscale selective growth of InAs on GaAs: A bottom-up approach. Appl. Phys. Lett. 93, 231904 (2009).Google Scholar
Tersoff, J., Teichert, C., and Lagally, M.G.: Self-organization in growth of quantum dot superlattices. Phys. Rev. Lett. 76, 1675 (1996).Google Scholar
Wang, Z.M., Holmes, K., Mazur, Y.I., and Salamo, G.J.: Fabrication of (In,Ga)As quantum-dot chains on GaAs(100). Appl. Phys. Lett. 84, 1931 (2004).Google Scholar
Heidemeyer, H., Denker, U., Muller, C., and Schmidt, O.G.: Morphology response to strain field interferences in stacks of highly ordered quantum dot arrays. Phys. Rev. Lett. 91, 196103 (2003).Google Scholar
Schneider, C., Huggenberger, A., Sünner, T., Heindel, T., Strauß, M., Göpfert, S., Weinmann, P., Reitzenstein, S., Worschech, L., Kamp, M., Höfling, S., and Forchel, A: Single site-controlled In(Ga)As/GaAs quantum dots: growth, properties and device integration. Nanotechnology 20, 434012 (2009).Google Scholar
Leon, R., Senden, T.J., Kim, Y., Jagadish, C., and Clark, A.: Nucleation transitions for InGaAs islands on vicinal (100) GaAs. Phys. Rev. Lett. 78, 4942 (1997).Google Scholar
Placidi, E., Arciprete, F., Sessi, V., Fanfoni, M., Patella, F., and Balzarotti, A.: Step erosion during nucleation of InAs/GaAs(001) quantum dots. Appl. Phys. Lett. 86, 241913 (2005).Google Scholar
Aqua, J.N., Berbezier, I., Favre, L., Frisch, T., and Ronda, A.: Growth and self-organization of SiGe nanostructures. Phys. Rep. 522, 59 (2012).Google Scholar
Placidi, E., Arciprete, F., Fanfoni, M., Patella, F., Orsini, E., and Balzarotti, A.: InAs/GaAs(001) epitaxy: Kinetic effects in the two-dimensional to three-dimensional transition. J. Phys. Condens. Matter 19, 225006 (2007).Google Scholar
Johnson, M.D., Orme, C., Hunt, A.W., Graff, D., Sudijono, J., Sander, L.M., Orr, B.G.: Stable and unstable growth in molecular beam epitaxy. Phys. Rev. Lett. 72, 116 (1994).Google Scholar
Patella, F., Arciprete, F., Placidi, E., Nufris, S., Fanfoni, M., Sgarlata, A., Schiumarini, D., and Balzarotti, A.: Morphological instabilities of the InAs/GaAs(001) interface and their effect on the self-assembling of InAs quantum-dot arrays. Appl. Phys. Lett. 81, 2270 (2002).Google Scholar
Ohtake, A. and Ozeki, M.: In situ observation of surface processes in InAs/GaAs(001) heteroepitaxy: The role of As on the growth mode. Appl. Phys. Lett. 78, 431 (2001).Google Scholar
Heyn, C.: Stability of InAs quantum dots. Phys. Rev. B 66, 075307 (2002).Google Scholar
Arciprete, F., Placidi, E., Magri, R., Fanfoni, M., Balzarotti, A., and Patella, F.: The unexpected role of arsenic in driving the selective growth of InAs quantum dots on GaAs. ACS Nano 7, 3868 (2013).Google Scholar
Yakes, M.K., Cress, C.D., Tischler, J.G., and Bracker, A.S.: Three-dimensional control of self-assembled quantum dot configurations. ACS Nano 4, 3877 (2010).Google Scholar
Patella, F., Arciprete, F., Fanfoni, M., Balzarotti, A., and Placidi, E.: Apparent critical thickness versus temperature for InAs quantum dot growth on GaAs(001). Appl. Phys. Lett. 88, 161903 (2006).Google Scholar
Patella, F., Nufris, S., Arciprete, F., Fanfoni, M., Placidi, E., Sgarlata, A., and Balzarotti, A.: Tracing the two- to three-dimensional transition in the InAs/GaAs(001) heteroepitaxial growth. Phys. Rev. B 67, 205308 (2003).Google Scholar
Patella, F., Sgarlata, A., Arciprete, F., Nufris, S., Szkutnik, P.D., Placidi, E., Fanfoni, M., Motta, N., and Balzarotti, A.: Self-assembly of InAs and Si/Ge quantum dots on structured surfaces. J. Phys. Condens. Matter. 16, S1503 (2004).Google Scholar
Patella, F., Arciprete, F., Fanfoni, M., Sessi, V., Balzarotti, A., and Placidi, E.: Reflection high energy electron diffraction observation of surface mass transport at the two- to three-dimensional growth transition of InAs on GaAs(001). Appl. Phys. Lett. 87, 252101 (2005).Google Scholar
Kratzer, P. and Scheffler, M.: Arsenic dimer dynamics during MBE growth: Theoretical evidence for a novel chemisorption state of As2 molecules on GaAs surfaces. Phys. Rev. Lett. 82, 4886 (1999).Google Scholar
Rosini, M., Kratzer, P., and Magri, R.: In adatom diffusion on InxGa1-xAs/GaAs(001): Effects of strain, reconstruction and composition. J. Phys. Condens. Matter 21, 355007 (2009).Google Scholar
Rosini, M., Magri, R., and Kratzer, P.: Adsorption of indium on an InAs wetting layer deposited on the GaAs(001) surface. Phys. Rev. B 77, 165323 (2008).Google Scholar
Placidi, E., Dalla Pia, A., and Arciprete, F.: Annealing effects on faceting of InAs/GaAs(001). Appl. Phys. Lett. 94, 021901 (2009).Google Scholar
Arciprete, F., Placidi, E., Fanfoni, M., Patella, F., Dalla Pia, A., and Balzarotti, A.: Temperature dependence of the size distribution function of InAs quantum dots on GaAs(001). Phys. Rev. B 81, 165306 (2010).Google Scholar

Arciprete et al. Supplementary Material

Movie

Download Arciprete et al. Supplementary Material(Video)
Video 1.2 MB