Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T16:43:14.507Z Has data issue: false hasContentIssue false

Joint differential scanning calorimetry, electrical resistivity, and microhardness study of aging in two AlCuMg alloys

Published online by Cambridge University Press:  31 January 2011

G. Riontino
Affiliation:
Università di Torino, Dipartimento di Chimica I.F.M., Via P. Giuria 9, 10125 Torino, Italy, and National Institute for the Physics of the Matter (INFM), Torino Università, Italy
M. Massazza
Affiliation:
Università di Torino, Dipartimento di Chimica I.F.M., Via P. Giuria 9, 10125 Torino, Italy, and National Institute for the Physics of the Matter (INFM), Torino Università, Italy
S. Abis
Affiliation:
Techma s.r.l., Zona Industriale di Ottana, 08100 Bolotana (NU), Italy, and INFM, Torino Università, Italy
Get access

Abstract

Two age-hardenable AlCuMg alloys (Cu 4.5 wt.% and Cu/Mg ratios of 2.5 and 8) were studied by electrical resistivity, differential scanning calorimetry, and microhardness measurements during natural and artificial aging at 110 °C. The results were interpreted in terms of Guinier–Preston/Guinier–Preston–Bagariatskij zone formation followed by a modification in θ″ and S″ intermediate phases.

Type
Articles
Copyright
Copyright © Materials Research Society 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Lumley, R.N., Morton, A.J., and Polmear, I.J., Acta Mater. 50, 3597 (2002).CrossRefGoogle Scholar
2.Riontino, G., Abis, S., and Bottero, C., Int. Conf. on Aluminum Alloys edited by Sato, T., Kumai, S., Kobayashi, T., and Murakami, Y. (ICAA6 – Toyohashi, The Japan Institute of Light Metals, 1998), Vol. 2, p. 903.Google Scholar
3.Abis, S., Massazza, M., Mengucci, P., and Riontino, G., Scripta Mater. 45, 685 (2001).Google Scholar
4.Riontino, G., Massazza, M., Negri, D., and Mengucci, P., Mater. Sci. Forum 396–402, 779 (2002).Google Scholar
5.Federighi, T., in Lattice Defects in Quenched Metals, edited by Cotterill, R.M. (Academic Press, New York, 1965).Google Scholar
6.Hillel, A.J., Edwards, J.T., and Wilkes, P., Philos. Mag. 35, 189 (1975).Google Scholar
7.Mulazimoglu, M.H., Drew, R.A.L., and Gruzelski, J.E., J. Mater. Sci. Lett. 8, 297 (1989).Google Scholar
8.Osamura, K., Otsuka, N., and Murakami, Y., Philos. Mag. B 45, 583 (1982).Google Scholar
9.Allia, P., Andreone, D., Turtelli, R. Sato, Vinai, F., and Riontino, G., J. Appl. Phys. 53, 8798 (1982).Google Scholar
10.Dupasquier, A., Ferragut, R., Folegati, P., Massazza, M., Riontino, G., and Somoza, A., Mater. Sci. Forum 396, 783 (2002).CrossRefGoogle Scholar
11.Massazza, M., Riontino, G., Dupasquier, A., Folegati, P., Ferragut, R., and Somoza, A., Philos. Mag. Lett. 82, 495 (2002)Google Scholar
12.Silcock, J.M., J. Inst. Met. 89, 203 (1960).Google Scholar
13.Ratchev, P., Verlinden, B., Smet, P. De, and Houtte, P. Van, Mater. Trans. JIM 40, 34 (1999).Google Scholar
14.Charai, A., Walther, T., Alfonso, C., Zahra, A.M., and Zahra, C.Y., Acta Mater. 48, 2751 (2000).Google Scholar