Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2025-01-04T03:47:32.094Z Has data issue: false hasContentIssue false

Investigation of the persistent luminescence of LiBaPO4:Eu2+

Published online by Cambridge University Press:  04 February 2014

Guifang Ju
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
Yihua Hu*
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
Li Chen
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
Xiaojuan Wang
Affiliation:
School of Physics and Optoelectronic Engineering, Guangdong University of Technology, Guangzhou 510006, People's Republic of China
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We investigated the persistent luminescence in europium-doped LiBaPO4. The persistent phosphors were synthesized via solid-state reaction method under mild reducing atmosphere. Its properties were investigated by x-ray diffraction, diffuse reflectance, photoluminescence, persistent luminescence, and thermoluminescence spectra. Under UV irradiation, broad-band persistent luminescence peaked at ∼470 nm was observed in the phosphors at room temperature. The effects of Eu2+ concentration on the persistent luminescence of LiBaPO4:Eu2+ were discussed. An energy level scheme was constructed to convey reasonable trapping and detrapping processes in the material.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Eeckhout, K.V.d., Smet, P.F., and Poelman, D.: Persistent luminescence in Eu2+-doped compounds: A review. Materials 3, 2536 (2010).Google Scholar
Brito, H.F., Hölsä, J., Laamanen, T., Lastusaari, M., Malkamäki, M., and Rodrigues, L.C.V.: Persistent luminescence mechanisms: Human imagination at work. Opt. Mater. Express 2, 371 (2012).Google Scholar
Brito, H.F., Hölsä, J., Jungner, H., Laamanen, T., Lastusaari, M., Malkamäki, M., and Rodrigues, L.C.V.: Persistent luminescence fading in Sr2MgSi2O7:Eu2+,R3+ materials: A thermoluminescence study. Opt. Mater. Express 2, 287 (2012).CrossRefGoogle Scholar
McKeever, S.W.S.: Thermoluminescence of Solids (Cambridge University Press, Cambridge, UK, 1985), p. 90.Google Scholar
Brito, H., Hassinen, J., Hölsä, J., Jungner, H., Laamanen, T., Lastusaari, M., Malkamäki, M., Niittykoski, J., Novák, P., and Rodrigues, L.V.: Optical energy storage properties of Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials. J. Therm. Anal. Calorim. 105, 657 (2011).Google Scholar
Zeng, W., Wang, Y., Han, S., Chen, W., Li, G., Wang, Y., and Wen, Y.: Design, synthesis and characterization of a novel yellow long-persistent phosphor: Ca2BO3Cl:Eu2+,Dy3+ . J. Mater. Chem. C 1, 3004 (2013).CrossRefGoogle Scholar
Rodrigues, L.C.V., Brito, H.F., Hölsä, J., and Lastusaari, M.: Persistent luminescence behavior of materials doped with Eu2+ and Tb3+ . Opt. Mater. Express 2, 382 (2012).Google Scholar
Chen, W. and Zhang, J.: Using nanoparticles to enable simultaneous radiation and photodynamic therapies for cancer treatment. J. Nanosci. Nanotechnol. 6, 1159 (2006).Google Scholar
Wu, B-Y., Wang, H-F., Chen, J-T., and Yan, X-P.: Fluorescence resonance energy transfer inhibition assay for α-fetoprotein excreted during cancer cell growth using functionalized persistent luminescence nanoparticles. J. Am. Chem. Soc. 133, 686 (2010).Google Scholar
Thomas, M., Daniel, S., and Cyrille, R.: Persistent luminescence nanoparticles for diagnostics and imaging. In Functional Nanoparticles for Bioanalysis, Nanomedicine, and Bioelectronic Devices; M. Hepel and C.-J. Zhong, eds.; Vol. 2; American Chemical Society, Washington, DC, 2012; p. 1.Google Scholar
le Masne de Chermont, Q., Chanéac, C., Seguin, J., Pellé, F., Maîtrejean, S., Jolivet, J.P., Gourier, D., Bessodes, M., and Scherman, D.: Nanoprobes with near-infrared persistent luminescence for in vivo imaging. Proc. Natl. Acad. Sci. U.S.A. 104, 9266 (2007).CrossRefGoogle ScholarPubMed
Matsuzawa, T., Aoki, Y., Takeuchi, N., and Murayama, Y.: A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+ . J. Electrochem. Soc. 143, 2670 (1996).CrossRefGoogle Scholar
Lin, Y., Tang, Z., Zhang, Z., Wang, X., and Zhang, J.: Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor. J. Mater. Sci. Lett. 20, 1505 (2001).Google Scholar
Pan, Z., Lu, Y.Y., and Liu, F.: Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 11, 58 (2011).CrossRefGoogle Scholar
Rodrigues, L.C.V., Brito, H.F., Hölsä, J., Stefani, R., Felinto, M.C.F.C., Lastusaari, M., Laamanen, T., and Nunes, L.A.O.: Discovery of the persistent luminescence mechanism of CdSiO3:Tb3+ . J. Phys. Chem. C 116, 11232 (2012).Google Scholar
Boutinaud, P., Parent, C., Flem, G.L., Moine, B., and Pedrini, C.: The solid solution BaLi1-xCuxPO4 (x ≤ 0.5): An example of Cu+ single-ion luminescence in oxide insulators. J. Mater. Chem. 6, 381 (1996).Google Scholar
Paques-Ledent, M-T.: Vibrational spectra and structure of LiB2+PO4 compounds with B = Sr, Ba, Pb. J. Solid State Chem. 23, 147 (1978).Google Scholar
Sun, J., Zhang, X., Xia, Z., and Du, H.: Luminescent properties of LiBaPO4:RE (RE = Eu2+, Tb3+, Sm3+) phosphors for white light-emitting diodes. J. Appl. Phys. 111, 013101 (2012).Google Scholar
Wu, Z., Liu, J., Gong, M., and Su, Q.: Optimization and temperature-dependent luminescence of LiBaPO4:Eu2+ phosphor for near-UV light-emitting diodes. J. Electrochem. Soc. 156, H153 (2009).Google Scholar
Wei, D., Huang, Y., Zhang, S., Yu, Y.M., and Seo, H.J.: Luminescence spectroscopy of Ce3+-doped ABaPO4 (A=Li, Na, K) phosphors. Appl. Phys. B 108, 447 (2012).Google Scholar
Waite, M.S.: Luminescence of alkali‐alkaline earth‐phosphates activated with Eu2+ . J. Electrochem. Soc. 121, 1122 (1974).Google Scholar
Wu, Z., Liu, J., Guo, Q., and Gong, M.: A novel blue-green-emitting phosphor LiBaPO4:Eu2+ for white light-emitting diodes. Chem. Lett. 37, 190 (2008).Google Scholar
Zhang, S., Nakai, Y., Tsuboi, T., Huang, Y., and Seo, H.J.: Luminescence and microstructural features of Eu-activated LiBaPO4 phosphor. Chem. Mater. 23, 1216 (2011).Google Scholar
Ju, G., Hu, Y., Chen, L., Wang, X., and Hung, L.: Persistent luminescence properties of SrMg2(PO4)2:Eu2+,Tb3+ . Appl. Phys. A (2013, in press). doi: 10.1007/s00339-013-7716-1.Google Scholar
Ju, G., Hu, Y., Chen, L., and Wang, X.: Persistent luminescence and its mechanism of Ba5(PO4)3Cl:Ce3+,Eu2+ . J. Appl. Phys. 111, 113508 (2012).Google Scholar
Ju, G., Hu, Y., Chen, L., Wang, X., and Mu, Z.: Persistent luminescence in Ba5(PO4)3Cl:Eu2+,R3+ (R=Y, La, Ce, Gd, Tb and Lu). Mater. Res. Bull. 48, 2598 (2013).Google Scholar
Omar, M.A.: Elementary Solid State Physics: Principles and Applications (Addison-Wesley Pub. Co., Boston, MA, 1975).Google Scholar
Tauc, J., Grigorovici, R., and Vancu, A.: Optical properties and electronic structure of amorphous germanium. Phys. Status Solidi B 15, 627 (1966).Google Scholar
Yakuphanoglu, F., Ilican, S., Caglar, M., and Caglar, Y.: The determination of the optical band and optical constants of non-crystalline and crystalline ZnO thin films deposited by spray pyrolysis. J. Optoelectron. Adv. Mater. 9, 2180 (2007).Google Scholar
Davis, E.A. and Mott, N.F.: Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors. Philos. Mag. 22, 0903 (1970).Google Scholar
Amirtharaj, P.M. and Seiler, D.G.: Optical properties of semiconductors. In Handbook of Optics: Design, Fabrication and Testing, Sources and Detectors, Radiometry and Photometry, Vol. II; Bass, M. ed.; (McGraw-Hill, Inc., 1995), p. 36.24.Google Scholar
Simmons, E.L.: Diffuse reflectance spectroscopy: A comparison of the theories. Appl. Opt. 14, 1380 (1975).Google Scholar
Torrent, J. and Barrón, V.: Diffuse reflectance spectroscopy. In Methods of Soil Analysis: Part 5, Mineralogical Methods; Ulery, A.L. and Drees, L.R. ed.; Soil Science Society of America, Madison, WI, 2008, p. xvii.Google Scholar
Nobbs, J.H.: Kubelka–Munk theory and the prediction of reflectance. Rev. Prog. Color. Relat. Top. 15, 66 (1985).Google Scholar
Dorenbos, P.: Systematic behaviour in trivalent lanthanide charge transfer energies. J. Phys. Condens. Matter 15, 8417 (2003).Google Scholar
Dorenbos, P.: Locating lanthanide impurity levels in the forbidden band of host crystals. J. Lumin. 108, 301 (2004).Google Scholar
Carnall, W.T., Fields, P.R., and Rajnak, K.: Electronic energy levels of the trivalent lanthanide aquo ions. IV. Eu3+ . J. Chem. Phys. 49, 4450 (1968).Google Scholar
Dorenbos, P.: Energy of the first 4f7→4f65d transition of Eu2+ in inorganic compounds. J. Lumin. 104, 239 (2003).Google Scholar
Blasse, G. and Grabmaier, B.C.: Luminescent Materials (Springer-Verlag, Berlin, Germany, 1994).CrossRefGoogle Scholar
Ju, G., Hu, Y., Chen, L., Wang, X., and Mu, Z.: Concentration quenching of persistent luminescence. Phys. B 415, 1 (2013).Google Scholar
Sakai, R., Katsumata, T., Komuro, S., and Morikawa, T.: Effect of composition on the phosphorescence from BaAl2O4: Eu2+, Dy3+ crystals. J. Lumin. 85, 149 (1999).Google Scholar
Shalgaonkar, C.S. and Narlikar, A.V.: Review: A review of the recent methods for determining trap depth from glow curves. J. Mater. Sci. 7, 1465 (1972).Google Scholar
Dorenbos, P.: Thermal quenching of Eu2+ 5d–4f luminescence in inorganic compounds. J. Phys. Condens. Matter 17, 8103 (2005).Google Scholar
Smet, P.F., Eeckhout, K.V.d., Bos, A.J.J., Kolk, E.V.d., and Dorenbos, P.: Temperature and wavelength dependent trap filling in M2Si5N8:Eu (M=Ca, Sr, Ba) persistent phosphors. J. Lumin. 132, 682 (2012).Google Scholar
Haecke, J.E.V., Smet, P.F., and Poelman, D.: Luminescent characterization of CaAl2S4:Eu powder. J. Lumin. 126, 508 (2007).Google Scholar
Aitasalo, T., Hölsä, J., Jungner, H., Lastusaari, M., and Niittykoski, J.: Thermoluminescence study of persistent luminescence materials: Eu2+- and R3+-doped calcium aluminates, CaAl2O4:Eu2+,R3+ . J. Phys. Chem. B 110, 4589 (2006).Google Scholar
Carlson, S., Hölsä, J., Laamanen, T., Lastusaari, M., Malkamäki, M., Niittykoski, J., and Valtonen, R.: X-ray absorption study of rare earth ions in Sr2MgSi2O7:Eu2+,R3+ persistent luminescence materials. Opt. Mater. 31, 1877 (2009).Google Scholar
Bos, A.J.J., Duijvenvoorde, R.M.V., Kolk, E.V.d., Drozdowski, W., and Dorenbos, P.: Thermoluminescence excitation spectroscopy: A versatile technique to study persistent luminescence phosphors. J. Lumin. 131, 1465 (2011).Google Scholar
Li, Y., Wang, Y., Gong, Y., Xu, X., and Zhang, F.: Photoionization behavior of Eu2+-doped BaMgSiO4 long-persisting phosphor upon UV irradiation. Acta Mater. 59, 3174 (2011).Google Scholar
Korthout, K., Eeckhout, K.V.d., Botterman, J., Nikitenko, S., Poelman, D., and Smet, P.F.: Luminescence and x-ray absorption measurements of persistent SrAl2O4:Eu,Dy powders: Evidence for valence state changes. Phys. Rev. B 84, 085140 (2011).Google Scholar