Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-25T22:05:21.387Z Has data issue: false hasContentIssue false

Investigation of propagation modes and temperature/velocity variation on unstable combustion synthesis

Published online by Cambridge University Press:  31 January 2011

H. P. Li
Affiliation:
Jin-Wen Institute of Technology, Hsintien, Taipei County, Taiwan, Republic of China
Get access

Abstract

Combustion synthesis/micropyretic synthesis is a technique in which material synthesis is accomplished by the propagation of a combustion front across the sample. In some cases, the combustion front may propagate in an unstable mode where the propagation velocity and combustion temperature of the combustion front are altered periodically. In this study, the processing conditions leading to unstable combustion reaction were first studied theoretically. The boundary temperatures separating stable and unstable reactions were then determined. The numerical analysis showed that the combustion temperature and the propagation velocity changed periodically during unstable combustion. As the combustion reaction became unstable, the average propagation velocity and the oscillatory frequency of front propagation decreased. The products of unstable combustion synthesis possessed the banded structures, implying the occurrence of the unstable oscillatory propagation, as demonstrated experimentally. In this study, high activation energy combustion (Ti + 2B reaction) and low activation energy combustion (Ni + Al reaction) were both chosen to illustrate the effect of unstable combustion. It is the first time the experimental and numerical results were combined to investigate the temperature and propagation velocity variations during unstable combustion.

Type
Articles
Copyright
Copyright © Materials Research Society 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Li, H.P., Bhaduri, S.B., and Sekhar, J.A., Metall. Mater. Trans. A 24A, 251 (1992).CrossRefGoogle Scholar
2.Merzhanov, A.G. and Khaikin, B.I., Prog. Energy Combust. Sci. 14, 1 (1988).CrossRefGoogle Scholar
3.Li, H.P. and Sekhar, J.A., J. Mater. Sci. 30, 4628 (1995).CrossRefGoogle Scholar
4.Li, H.P., Mater. Sci. Eng. A (2003, in press).Google Scholar
5.Subramanian, V., Lakshmikantha, M.G., and Sekhar, J.A., J. Mater. Res. 10, 1235 (1995).CrossRefGoogle Scholar
6.Munir, Z.A., Am. Ceram. Bull. 67, 342 (1988).Google Scholar
7.Li, H.P. and Sekhar, J.A., J. Mater. Res. 10, 2471 (1995).CrossRefGoogle Scholar
8.Li, H.P. and Sekhar, J.A., J. Mater. Res. 8, 2515 (1993).CrossRefGoogle Scholar
9.Munir, Z.A. and Anselmi-Tamburini, U., Mater. Sci. Rep. 3, 277 (1989).CrossRefGoogle Scholar
10.Lakshmikantha, M.G., Bhattacharya, A., and Sekhar, J.A., Metall. Trans. A 23A, 23 (1992).CrossRefGoogle Scholar
11.Lakshmikantha, M.G. and Sekhar, J.A., Metall. Trans. A 24A, 617 (1993).CrossRefGoogle Scholar
12.Lakshmikantha, M.G. and Sekhar, J.A., J. Am. Ceram. Soc. 77, 202 (1994).CrossRefGoogle Scholar
13.Lakshmikantha, M.G. and Sekhar, J.A., J. Mater. Sci. 28, 6403 (1993).CrossRefGoogle Scholar
14.Dey, G.K., Arya, A., and Sekhar, J.A., J. Mater. Res. 15, 63 (2000).CrossRefGoogle Scholar
15.Fu, M., Penumella, S., and Sekhar, J.A., J. Mater. Res. 14, 2023 (1999).CrossRefGoogle Scholar
16.Zhang, H. and Sekhar, J.A., J. Mater. Sci. 32, 1815 (1997).CrossRefGoogle Scholar
17.Shkiro, V.M. and Nersisyan, G.A., Combust. Explos. Shock Waves (Engl. Transl.)14, 121 (1978).CrossRefGoogle Scholar
18.Munir, Z.A. and Sata, N., Int. J. SHS. 1, 355 (1992).Google Scholar
19.Munir, Z.A., Metall. Trans. A 23A, 7 (1992).CrossRefGoogle Scholar
20.Dvoryankin, A.V., Strunina, A.G., and Merzhanov, A.G., Combust. Explos. Shock Waves (Engl. Transl.)21, 421 (1985).CrossRefGoogle Scholar
21.Moore, J.J. and Feng, H.J., Prog. Mater. Sci. 39, 243 (1995).CrossRefGoogle Scholar
22.Shkadinskii, K.G., Khaikin, B.I., and Merzhanov, A.G., Combust. Explos. Shock Waves 7, 15 (1971).CrossRefGoogle Scholar
23.Brain, I., Knacke, O., and Kubaschewski, O., Thermochemical Properties of Inorganic Substances (Springer-Verlag, New York, 1973).Google Scholar
24.Lide, D.R., CRC Handbook of Chemist and Physics (CRC, Boca Raton, FL, 1990).Google Scholar
25.Brandes, E.A. and Brook, G.B., Smithells Metals Reference Book(Butterworth-Heinemann, Washington, DC, 1992).Google Scholar
26.Naiborodenko, Y.S. and Itin, V.I., Combust. Explos. Shock Waves, 11, 293 (1975).CrossRefGoogle Scholar
27.Azatyan, T.S., Mal’tsev, V.M., Merzhanov, A.G., and Seleznev, V.A., Fiz. Goreniya Vzryva,16, 37 (1980).Google Scholar
28.Samsonov, G.V. and Vinitskii, I.M., Handbook of Refractory Compounds (IFI/Plenum, New York, 1980), p. 128.CrossRefGoogle Scholar
29.Annual Book of ASTM Standards (ASTM, Philadelphia, PA, 1989), Vol. 15.02, p. 109.Google Scholar
30.Matkowsky, B.J. and Sivashinsky, G.I., SIAM J. Appl. Math. 35,465 (1978).CrossRefGoogle Scholar
31.Rodrignes, J.A., Pandolfelli, V.C., Bottaf, W.J., Tomasi, R., Derby, B., Stevens, R., and Brook, R.J., J. Mater, Sci. Lett. 10, 819 (1991).CrossRefGoogle Scholar
32.Maksimov, Y.M., Pak, A.T., Lavrenchuk, G.B., Naiborodenko, Y.S., and Merzhanov, A.G., Combust. Explos. Shock Waves 15, 415 (1979).CrossRefGoogle Scholar
33.Boronvinskaya, I.P., Merzhanov, A.G., Novikov, N.P., and Filonenko, A.K., Combust. Explos. Shock Waves 9, 2 (1973).Google Scholar
34.Dunmead, S.D., Readey, D.W., Semler, C.E., and Holt, J.B., J. Am. Ceram. Soc. 72, 2318 (1989).CrossRefGoogle Scholar
35.Zenin, A.A., Merzhanov, A.G., and Nersisyan, G.A., Combust. Explos. Shock Waves 17, 63 (1980).CrossRefGoogle Scholar
36.Zhang, S. and Munir, Z.A., J. Mater. Sci. 26, 3685 (1991).CrossRefGoogle Scholar
37.Li, H.P., Int. J. SHS 4, 199 (1995).Google Scholar