Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-27T01:36:50.190Z Has data issue: false hasContentIssue false

Investigation of cured hydridopolysilazane-derived ceramic fibers via dynamic nuclear polarization

Published online by Cambridge University Press:  31 January 2011

Russell H. Lewis
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
Robert A. Wind
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
G.E. Maciel
Affiliation:
Department of Chemistry, Colorado State University, Fort Collins, Colorado 80523
Get access

Abstract

During the pyrolysis of cured hydridopolysilazane (HPZ) polymer to form Si–C–N ceramic fibers, large quantities of unpaired electrons are produced. For such materials dynamic nuclear polarization (DNP) provides a means of enhancing the intensity of the NMR signal, and supplies information on the localization or delocalization of unpaired electrons. 29Si, 1H, and 13C DNP gives enhancements of 250 for 13C and at least 800 for 29Si. 13C and 29Si DNP-DPMAS experiments yield the following results: (i) there are at least two distinct types of carbon, sp2 and sp3; (ii) there is a distribution of sp3 silicon environments; (iii) the unpaired electrons behave as fixed paramagnetic centers; and (iv) the unpaired electrons are distributed homogeneously throughout the sample. Proton DNP spectra can be obtained even though hydrogen is only a trace element in the finished ceramic.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Legrow, G.E.Lim, T. F.Lipowitz, J. and Reaoch, R. S.Ceram. Bull. 66 (2), 363 (1987).Google Scholar
2Lipowitz, J. and Turner, G. L.Polym. Prepr. 29 (1), 74 (1988).Google Scholar
3Wynne, K. J. and Rice, R. W.Ann. Rev. Mater. Sci. 14, 297 (1984).CrossRefGoogle Scholar
4Rice, R.W.Am. Ceram. Soc. Bull. 62 (8), 889 (1983).Google Scholar
5Maunder, M. J.Practical Hints on Infra-red Spectrometry (Adam Hilger Ltd., London, 1971).Google Scholar
6Hatfield, G. R. and Carduner, K. R.J. Mater. Sci. 24, 4209 (1989).CrossRefGoogle Scholar
7Abragam, A.The Principles of Nuclear Magnetism (Clarendon Press, London, 1961), Chap. 6.Google Scholar
8Andrew, E. R.Prog. NMR Spectrosc. 8, 1 (1971).CrossRefGoogle Scholar
9Pines, A.Gibby, W. G. and Waugh, J. S.J. Chem. Phys. 59, 569 (1973).CrossRefGoogle Scholar
10Overhauser, A.G.Phys. Rev. 92, 411 (1953).CrossRefGoogle Scholar
11Abragam, A.The Principles of Nuclear Magnetism (Clarendon Press, London, 1961), Chap. 9.Google Scholar
12Wind, R. A.Duijvestijn, M. J.Lugt, C. van der, Manenschijn, A. and Vriend, J.Prog. NMR Spectrosc. 17, 33 (1985).CrossRefGoogle Scholar
13Poole, C. P.Electron Spin Resonance (John Wiley & Sons, New York, 1983), Chap. 11.Google Scholar
14Maciel, G. E. and Davis, M. F.J. Magn. Reson. 64, 356 (1985).Google Scholar
15Wind, R.A.Anthonio, F.E.Duijvestijn, M.J.Smidt, J.Trommel, J., and Vette, G. M. C. de, J. Magn. Reson. 52, 424 (1983).Google Scholar
16Hahn, E.L.Phys. Rev. 80, 580 (1950).CrossRefGoogle Scholar
17Wilkie, C.A.Ehlert, T.C. and Haworth, D.T.J. Inorg. Nucl. Chem. 40, 1983 (1978).Google Scholar
18Retcofsky, H.L. and Friedel, R.A.J. Phys. Chem. 77 (1), 68 (1973).CrossRefGoogle Scholar
19Guth, J.R. and Petuskey, W.T.J. Phys. Chem. 91, 5361 (1987).CrossRefGoogle Scholar
20Hartman, J.S.Richardson, M.F.Sherriff, B.L. and Winsborrow, B.G., J. Am. Chem. Soc. 109, 6059 (1987).Google Scholar
21Zhang, M. and Maciel, G.E.J. Anal. Chem. 62, 633 (1990).Google Scholar
22Powles, J. G. and Strange, J. H.Proc. Phys. Soc. London 82, 615 (1963).CrossRefGoogle Scholar
23Maciel, G. E.Bronnimann, C. E. and Hawkins, B. L.Adv. Magn. Reson. 14, 125 (1990).Google Scholar
24Burum, D. P. and Rhim, W. K.J. Chem. Phys. 70 (7), 3553 (1979).CrossRefGoogle Scholar
25Naito, A.Ganapathy, S. and McDowell, C.A.J. Chem. Phys. 74 (10), 5393 (1981).CrossRefGoogle Scholar
26Wind, R.A.Duijvestijn, M.J.Lugt, C. van der, Smidt, J. and Vriend, J.Magnetic Resonance Introduction Advanced Topics and Applications to Fossil Energy, edited by Petrakis, L. and Fraissard, J. P. (D. Reidel Dordrecht, 1984).Google Scholar
27Lowe, I.J. and Tse, D.Phys. Rev. 166 (2), 279 (1968).CrossRefGoogle Scholar
28Rorschach, H. E. Jr. , Physica 30, 38 (1964).CrossRefGoogle Scholar
29Lowe, I.J. and Gade, S.Phys. Rev. 156, 817 (1967).CrossRefGoogle Scholar
30Bronnimann, C. E.Zeigler, R. C. and Maciel, G. E.J. Am. Chem. Soc. 110, 2023 (1988).CrossRefGoogle Scholar