Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-27T00:38:25.815Z Has data issue: false hasContentIssue false

Inversion domain boundaries in ZnO ceramics

Published online by Cambridge University Press:  31 January 2011

M. A. McCoy
Affiliation:
Department of Materials, Imperial College of Science, Technology and Medicine, London, and Department of Engineering Materials, University of Sheffield, Sheffield, United Kingdom
R. W. Grimes
Affiliation:
Department of Materials, Imperial College of Science, Technology and Medicine, London, United Kingdom
W. E. Lee
Affiliation:
Department of Engineering Materials, University of Sheffield, Sheffield, United Kingdom
Get access

Abstract

Inversion domain boundaries (IDB's) in ZnO ceramics, associated with Sb2O3 doping, have been characterized using a range of electron microscopy techniques. The IDB's lie primarily on basal planes, but frequently are stepped along prismatic planes. The basal IDB can be characterized as (i) an inversion that causes an antisite exchange of cations and anions across the boundary, (ii) an effective displacement of the sixfold screw axis in the wurtzite structure vectors by a translation of 1/3 and (iii) a displacement normal to the boundary. Significant Sb segregation is detected in the basal IDB segments in agreement with previous work, and in ceramics doped with Sb2O3 and Bi2O3. These IDB's contained both Sb and Bi, suggesting that while Bi does not participate in IDB nucleation, it resides in the boundary. Comparison of experimental and calculated HREM images suggests that the IDB is composed of a monolayer of Type I (111) zinc antimonate spinel, consisting of a single layer of octahedrally coordinated zinc and antimony cations.

Type
Articles
Copyright
Copyright © Materials Research Society 1996

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Karakas, Y. and Lee, W. E., Brit. Ceram. Trans. 93 (2), 1 (1993).Google Scholar
2.Olsson, E., Falk, L. K. L., and Dunlop, G. L., J. Mater. Sci. 20, 4091 (1985).CrossRefGoogle Scholar
3.Clarke, D. R., J. Appl. Phys. 49 (4), 2407 (1978).CrossRefGoogle Scholar
4.Gupta, T. K., J. Am. Ceram. Soc. 74 (7), 1817 (1990).CrossRefGoogle Scholar
5.Kim, J., Kimura, T., and Yamaguchi, T., J. Mater. Sci. 24, 2581 (1989).CrossRefGoogle Scholar
6.Matsuoka, M., Jpn. J. Appl. Phys. 10 (6), 736 (1971).CrossRefGoogle Scholar
7.Senda, T. and Bradt, R. C., J. Jpn. Ceram. Soc. 99 (9), 727 (1991).CrossRefGoogle Scholar
8.Makovec, D. and Trontelj, M., J. Am. Ceram. Soc. 77 (5), 1202 (1994).CrossRefGoogle Scholar
9.McCoy, M.A., Lee, W.E., and Grimes, R. W., unpublished work.Google Scholar
10.Kim, J. C. and Goo, E., J. Am. Ceram. Soc. 73 (4), 877 (1990).CrossRefGoogle Scholar
11.Schulz, H. and Thiemann, K. H., Solid State Commun. 32, 783 (1979).CrossRefGoogle Scholar
12.Blank, H., Delavignette, P., Gevers, R., and Amelinckx, S., Phys. Status Solidi 7, 747 (1964).Google Scholar
13.Harris, J. H., Youngman, R. A., and Teller, R. G., J. Mater. Res. 5, 1763 (1990).CrossRefGoogle Scholar
14.Westwood, A. D. and Notis, M. R., J. Am. Ceram. Soc. 74 (6), 1226 (1991).CrossRefGoogle Scholar
15.Massler, O., Senftleben, K-U., and Sockel, H. G., Mater. Sci. Eng. A154, L19 (1992).CrossRefGoogle Scholar
16.Berger, A., J. Am. Ceram. Soc. 74 (5), 1148 (1991).CrossRefGoogle Scholar
17.Westwood, A. D., Youngman, R.A., McCartney, M.R., Cormack, A.N., and Notis, M. R., J. Mater. Res. 10, 1270 (1995).CrossRefGoogle Scholar
18.Bruley, J., Bremer, U., and Krasevec, V., J. Am. Ceram. Soc. 75 (11), 3127 (1992).CrossRefGoogle Scholar
19.Krasevec, V., Trontelj, M., and Golic, L., J. Am. Ceram. Soc. 74 (4), 760 (1991).CrossRefGoogle Scholar
20.Stadelmann, P., Ultramicroscopy 21, 131 (1987).Google Scholar
21.Snykers, M., Serneels, R., Delavignette, P., Gevers, R., Van Landuyt, J., and Amelinckx, S., Phys. Status Solidi A 41, 51 (1977).Google Scholar
22.Berger, A., J. Am. Ceram. Soc. 78 (1), 153 (1995).CrossRefGoogle Scholar
23.Amelinckx, S., in Materials Science—A Comprehensive Treatment, edited by Haasen, P. and Cahn, J. (1993).Google Scholar
24.Hagege, S., Ishida, Y., and Tanaka, S., J. de Phys. C5 (10), 189 (1988).Google Scholar
25.Drum, C. M., Philos. Mag. 11, 313 (1965).CrossRefGoogle Scholar
26.Bayer, G., Naturwiss. (2), 46 (1961).CrossRefGoogle Scholar
27.McKie, D. and McKie, C., in Crystalline Solids (Thos. Nelson and Sons, London, 1974).Google Scholar
28.McCartney, M. R., Youngman, R. A., and Teller, R. G., Ultramicroscopy 40, 2991 (1992).CrossRefGoogle Scholar
29.Kim, J., Kimura, T., and Yamaguchi, T., J. Mater. Sci. 24, 213219 (1989).CrossRefGoogle Scholar