Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T16:56:19.201Z Has data issue: false hasContentIssue false

Interface-driven microstructure development and ultra high strength of bulk nanostructured Cu-Nb multilayers fabricated by severe plastic deformation

Published online by Cambridge University Press:  10 April 2013

Irene J. Beyerlein*
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Nathan A. Mara
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
John S. Carpenter
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Thomas Nizolek
Affiliation:
Department of Materials, University of California at Santa Barbara, Santa Barbara, California 93106
William M. Mook
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Thomas A. Wynn
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Rodney J. McCabe
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Jason R. Mayeur
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Keonwook Kang
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Shijian Zheng
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Jian Wang
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Tresa M. Pollock
Affiliation:
Department of Materials, University of California at Santa Barbara, Santa Barbara, California 93106
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We examine the development of stable bimetal interfaces in nanolayered composites in severe plastic deformation. Copper-niobium multilayers of varying layer thicknesses from several micrometers to 10 nanometers (nm) were fabricated via accumulative roll bonding (ARB). Investigation of their 5-parameter character and atomic scale structure finds that when layer thicknesses refine well below one micrometer, the interfaces self-organize to a few interface orientation relationships. With atomic scale and crystal plasticity modeling, we identify that the two controlling factors that determine whether an interface is stable under high strain rolling are orientation stability of the bicrystal and interface formation energy. A figure-of-merit is introduced that not only predicts the development of the prevailing interfaces but also explains why other interfaces did not develop. Through a suite of nanomechanical and bulk test results, we show that ARB composites containing these stable interfaces are found to have exceptional hardness (∼4.5 GPa) and strength (∼2 GPa).

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Lee, S-B., LeDonne, J.E., Lim, S.C.V., Beyerlein, I.J., and Rollett, A.D.: The five-parameter heterophase interface character distribution (HICD) of physical vapor-deposited and accumulative roll-bonded Cu-Nb multilayer composites. Acta Mater. 60, 1747 (2012).CrossRefGoogle Scholar
Carpenter, J.S., Vogel, S.C., LeDonne, J., Hammon, D.L., Beyerlein, I.J., and Mara, N.A.: Bulk texture evolution of Cu-Nb nanolamellar composites during accumulative roll bonding. Acta Mater. 60, 1576 (2012).CrossRefGoogle Scholar
Beyerlein, I.J., Mara, N.A., Wang, J., Carpenter, J.S., Zheng, S.J., Han, W.Z., Zhang, R.F., Kang, K., Nizolek, T., and Pollock, T.M.: Structure–property–functionality of bimetal interfaces. JOM 64, 1192 (2012).CrossRefGoogle Scholar
Quadir, M.Z., Al-Buhamad, O., Bassman, L., and Ferry, M.: Development of a recovered/recrystallized multilayered microstructure in Al alloys by accumulative roll bonding. Acta Mater. 55, 54385448 (2007).CrossRefGoogle Scholar
Quadir, M.Z., Ferry, M., Al-Buhamad, O., and Munroe, P.R.: Shear banding and recrystallization texture development in a multilayered Al alloy sheet produced by accumulative roll bonding. Acta Mater. 57, 2940 (2009).CrossRefGoogle Scholar
Carpenter, J.S., McCabe, R.J., Beyerlein, I.J., Wynn, T.A., and Mara, N.A.: A wedge-mounting technique for nanoscale electron backscatter diffraction. J. Appl. Phys. doi: 10.1063/1.4794388.Google Scholar
Zheng, S.J., Beyerlein, I.J., Wang, J., Carpenter, J.S., Han, W.Z., and Mara, N.A.: Deformation twinning mechanisms from bi-metal interfaces as revealed by in-situ straining in the TEM. Acta Mater. 60, 5858 (2012).CrossRefGoogle Scholar
Demkowicz, M.J. and Thilly, L.: Structure, shear resistance, and interaction with point defects of interfaces in Cu-Nb nanocomposites synthesized by severe plastic deformation. Acta Mater. 59, 7744 (2011).CrossRefGoogle Scholar
Kang, K., Wang, J., Zheng, S.J., and Beyerlein, I.J.: Atomic structure variations of mechanically stable interfaces. J. Appl. Phys. 111, 053531 (2012).CrossRefGoogle Scholar
Wang, J., Kang, K., Zhang, R.F., Zheng, S.J., Beyerlein, I.J., and Mara, N.A.: Structure and property of interfaces in ARB Cu/Nb laminated composites. JOM 64(10), 1208 (2012).CrossRefGoogle Scholar
Han, W.Z., Carpenter, J.S., Wang, J., Beyerlein, I.J., and Mara, N.A.: Atomic-level study of twin nucleation from fcc/bcc interfaces in nanolamellar composites. Appl. Phys. Lett. 100, 011911 (2012).CrossRefGoogle Scholar
Carpenter, J.S., Zheng, S.J., Zhang, R.F., Vogel, S.C., Beyerlein, I.J., and Mara, N.A.: Thermal stability of Cu-Nb nanolamellar composites fabricated via accumulative roll bonding. Philos. Mag. (2013). doi: 10.1080/14786435.2012.731527.CrossRefGoogle Scholar
Carpenter, J.S., Liu, X., Darbal, A., Nuhfer, N.T., McCabe, R.J., Vogel, S.C., LeDonne, J.E., Rollett, A.D., Barmak, K., Beyerlein, I.J., and Mara, N.A.: A comparison of texture results obtained using precession electron diffraction and neutron diffraction methods at diminishing length scales in ordered bimetallic nanolamellar composites. Scr. Mater. 67, 336 (2012).CrossRefGoogle Scholar
Lim, S.C.V. and Rollett, A.D.: Length scale effects on recrystallization and texture evolution in Cu layers of a roll-bonded Cu-Nb composite. Mater. Sci. Eng., A 520, 189 (2009).CrossRefGoogle Scholar
Mayeur, J.R., Beyerlein, I.J., Bronkhorst, C.A., Mourad, H.M., and Hansen, B.L.. 2012. A crystal plasticity study of interfacial stability of CuNb bicrystals. Int. J. Plast. (2013) Accepted. doi: 10.1016/j.ijplas.2013.02.006.CrossRefGoogle Scholar
Hansen, B.L., Carpenter, J.S., Sintay, S.D., Bronkhorst, C.A., McCabe, R.J., Mayeur, J.R., Mourad, H.M., Beyerlein, I.J., Mara, N.A., Chen, S.R., and Gray, G.T. III: Modeling the texture evolution of Cu/Nb layered composites during rolling. Int. J. Plast. (2012) in press. doi: 10.1016/j.ijplas.2013.03.001.Google Scholar
Beyerlein, I.J., Mara, N.A., Bhattacharyya, D., Necker, C.T., and Alexander, D.J.: Texture evolution via combined slip and deformation twinning in rolled silver-copper eutectic nanocomposite. Int. J. Plast. 27(1), 121146 (2011).CrossRefGoogle Scholar
Hirsch, J. and Lücke, K.: Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals - I. Description of rolling texture development in homogeneous CuZn alloys. Acta Metall. 36, 28632882 (1988).CrossRefGoogle Scholar
Raabe, D., Ball, J., and Gottstein, G.: Rolling textures of Cu-20% Nb composite. Scr. Metall. Mater. 27, 211 (1992).CrossRefGoogle Scholar
Kang, K., Wang, J., and Beyerlein, I.J.: Minimum energy structures of faceted, incoherent interfaces. J. Appl. Phys. 112, 073501 (2012).CrossRefGoogle Scholar
Chen, J.K., Chen, G., and Reynolds, W.T. Jr.: Interfacial structure and growth mechanisms of lath-shaped precipitates in Ni-45 wt% Cr. Philos. Mag. A 78, 4415 (1997).Google Scholar
Ashkenazy, Y., Vo, N.Q., Schwen, D., Averback, R.S., and Bellon, P.: Shear-induced chemical mixing in heterogeneous systems. Acta Mater. 60, 984 (2012).CrossRefGoogle Scholar
Sauvage, X., Renaud, L., Deconihout, B., Blavette, D., Ping, D.H., and Hono, K.: Solid state amorphization in cold drawn Cu/Nb wires. Acta Mater. 49, 389 (2001).CrossRefGoogle Scholar
Hirsch, J. and Lücke, K.: Mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals – II. Simulation and interpretation of experiments on the basis of Taylor-type theories. Acta Metall. 36, 2883 (1988).CrossRefGoogle Scholar
Zhou, Y., Toth, L.S., and Neale, K.W.: On the stability of the ideal orientations of rolling textures for f.c.c. polycrystals. Acta Metall. Mater. 40, 3179 (1992).CrossRefGoogle Scholar
Toth, L.S., Jonas, J.J., Daniel, D., and Ray, R.K.: Development of ferrite rolling textures in low- and extra low-carbon steels. Metall. Trans. A 21, 2985 (1990).CrossRefGoogle Scholar
Wang, Z.Q. and Beyerlein, I.J.: An atomistically informed dislocation dynamics model for the plastic anisotropy and tension-compression asymmetry of bcc metals. Int. J. Plast. 27(10), 1471 (2011).CrossRefGoogle Scholar
Simmons, G. and Wang, H.: Single Crystal Elastic Constants and Calculated Aggregate Properties. A Handbook (MIT Press, London, UK, 1971).Google Scholar
Demkowicz, M.J., Hoagland, R.G., and Hirth, J.P.: Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 2 (2008).CrossRefGoogle ScholarPubMed
Voter, A.F.: Los Alamos Unclassified Technical; Report No. LA-UR 93-3901 (1993).Google Scholar
Johnson, R. and Oh, D.J.: Analytic embedded atom method model for BCC metals. J. Mater. Res. 4, 1195 (1989).CrossRefGoogle Scholar
Demkowicz, M.J. and Hoagland, R.G.: Simulations of collision cascades in Cu-Nb layered composites using an EAM interatomic potential. Int. J. Appl. Mech. 1, 421 (2009).CrossRefGoogle Scholar
Greer, J.R. and De Hosson, J.T.M.: Plasticity in small-sized metallic systems: Intrinsic versus extrinsic size effect. Prog. Mater. Sci. 56(6), 654724 (2011).CrossRefGoogle Scholar
Eason, E.D., Odette, G.R., Nanstad, R.K., and Yamamoto, T.: A Physically Based Correlation of Irradiation-Induced Transition Temperature Shifts for RPV Steels. Oak Ridge National Laboratory Report, ORNL/TM-2006/530 (2006).CrossRefGoogle Scholar
Misra, A., Hirth, J.P., and Hoagland, R.G.: Length-scale-dependent deformation mechanisms in incoherent metallic multilayered composites. Acta Mater. 53(18), 48174824 (2005).CrossRefGoogle Scholar
Wang, Z.Q., Beyerlein, I.J., and LeSar, R.: Plastic anisotropy of fcc single crystals in high rate deformation. Int. J. Plast. 25, 26 (2009).CrossRefGoogle Scholar
Misra, A. and Hoagland, R.G.: Bimetallic layered nanocomposites: Synthesis, structure and mechanical properties, in The Dekker Encyclopedia of Nanoscience and Nanotechnology, edited by Schwarz, J.A., Contescu, C., and Putyera, K. (Taylor & Francis, Inc., 2005) 10.1081/E-ENN-120013790.Google Scholar
Kalidindi, S.R. and Pathak, S.: Determination of the effective zero-point and the extraction of spherical nanoindentation stress-strain curves. Acta Mater. 56(14), 35233532 (2008).CrossRefGoogle Scholar
Pathak, S., Michler, J., Wasmer, K., and Kalidindi, S.R.: Studying grain boundary regions in polycrystalline materials using spherical nano-indentation and orientation imaging microscopy. J. Mater. Sci. 47(2), 815823 (2012).CrossRefGoogle Scholar
Mara, N.A., Bhattacharyya, D., Dickerson, P., Hoagland, R.G., and Misra, A.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92(23), 231901231903 (2008).CrossRefGoogle Scholar
Mara, N.A., Bhattacharyya, D., Hirth, J.P., Dickerson, P., and Misra, A.: Mechanism for shear banding in nanolayered composites. Appl. Phys. Lett. 97(2), 021909 (2010).CrossRefGoogle Scholar
Uchic, M.D., Dimiduk, D.M., Florando, J.N., and Nix, W.D.: Sample dimensions influence strength and crystal plasticity. Science 305(5686), 986989 (2004).CrossRefGoogle ScholarPubMed
Li, N., Mara, N.A., Wang, J., Dickerson, P., Huang, J.Y., and Misra, A.. Ex situ and in situ measurements of the shear strength of interfaces in metallic multilayers. Scr. Mater. 67(5), 479482 (2012).CrossRefGoogle Scholar
Wagner, P., Engler, O., and Lücke, K.: Formation of Cu-type shear bands and their influence on deformation and texture of rolled fcc {112}<111> single crystals. Acta Metall. Mater. 43, 3799 (1995).CrossRefGoogle Scholar
Mahesh, S., Tomé, C.N., McCabe, R.J., Kaschner, G.C., Beyerlein, I.J., and Misra, A.: Application of a substructure-based hardening model to copper under loading path changes. Metall. Mater. Trans. A 35, 37633774 (2004).CrossRefGoogle Scholar
Beyerlein, I.J., Alexander, D.J., and Tomé, C.N.: Plastic anisotropy in aluminum and copper prestrained by equal channel angular extrusion (ECAE). J. Mater. Sci. 42, 17331750 (2007).CrossRefGoogle Scholar
Yapici, G.G., Beyerlein, I.J., Karaman, I., and Tomé, C.N.: Tension-compression asymmetry in severely deformed pure copper. Acta Mater. 55, 46034613 (2007).CrossRefGoogle Scholar