Hostname: page-component-745bb68f8f-b95js Total loading time: 0 Render date: 2025-01-12T09:53:38.178Z Has data issue: false hasContentIssue false

Interdependence of stress and interdiffusion during solid-state amorphization in Ni–Hf

Published online by Cambridge University Press:  31 January 2011

W. S. L. Boyer
Affiliation:
Department of Nuclear Engineering & Radiological Sciences, University of Michigan, Ann Arbor, Michigan 48109-2145
M. Atzmon
Affiliation:
Departments of Nuclear Engineering & Radiological Sciences and Materials Science & Engineering, University of Michigan, Ann Arbor, Michigan 48109-2104
Get access

Abstract

The evolution of stress in a Ni–Hf diffusion couple during solid-state amorphization reaction has been monitored by substrate curvature measurements and x-ray diffraction. The latter technique allowed an independent determination of the contribution of changes in stress-free lattice parameter to the stress in the crystalline layers. The results indicate that the amorphous phase forms under a large tensile stress, which relaxes as the reaction progresses. This stress in the amorphous phase is consistent with the volume change associated with the reaction. Stresses in the crystalline, elemental phases are considerably smaller and not affected by the reaction. Low-temperature Ni ion irradiation increases the tensile stress in the diffusion couple. The large observed stress variations are not accompanied by variations in the effective interdiffusion coefficient.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Johnson, W.L., Prog. Mater. Sci. 30, 81 (1986).CrossRefGoogle Scholar
Compare for example, Johnson, W.L., Dolgin, B., and Van Rossum, M., in Glass-Current Issues, edited by Wright, A.F. and Dupay, J. (NATO ASI Series, E-92, Martinus Nijhoff, Boston, MA, 1985), p. 172.CrossRefGoogle Scholar
2.Boyer, W.S.L and Atzmon, M., J. Alloys Compd. 194, 213 (1993).CrossRefGoogle Scholar
3.Kidson, G.V., J. Nucl. Mater. 3, 21 (1961), and references therein.CrossRefGoogle Scholar
4.Van Rossum, M., Nicolet, M-A., and Johnson, W.L., Phys. Rev. B 29, 5498 (1984).CrossRefGoogle Scholar
5.Unruh, K.M., Meng, W.J., and Johnson, W.L., in Layered Structures, Epitaxy, and Interfaces, edited by Gibson, J.M. and Dawson, L.R. (Mater. Res. Symp. Proc. 37, Pittsburgh, PA, 1985), p. 551.Google Scholar
6.Aaen Andersen, L-U., Bøttiger, J., Janting, J., Karpe, N., Larsen, K.K., Greer, A.L., and Somekh, R.E., Mater. Sci. Eng. A 133, 415 (1991).CrossRefGoogle Scholar
7.Karpe, N., Bøttiger, J., Greer, A.L., Janting, J., and Kyllesbech Larsen, K., J. Mater. Res. 7, 926 (1992).CrossRefGoogle Scholar
8.Greer, A.L., Mater. Sci. Eng. A 134, 1268 (1991).CrossRefGoogle Scholar
9.Stephenson, G.B., J. Non-Cryst. Solids 66, 393 (1984).CrossRefGoogle Scholar
10.Theiss, S.D., Spaepen, F., and Aziz, M.J., in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Børgensen, P., Townsend, P.H., Ross, C.A., and Volkert, C.A. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 15.Google Scholar
11.Moske, M. and Samwer, K., Z. Phys. B 77, 3 (1989).CrossRefGoogle Scholar
12.Moske, M. and Samwer, K., in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Børgensen, P., Townsend, P.H., Ross, C.A., and Volkert, C.A. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 27.Google Scholar
13.Aziz, M.J., Sabin, P.C., and Lu, G-Q., Phys. Rev. B 44, 9812 (1991); compare references therein.CrossRefGoogle Scholar
14.Altounian, Z. and Strom-Olsen, J.O., Phys. Rev. B 27, 4149 (1983).CrossRefGoogle Scholar
15.Van Houtte, P. and De Buyser, L., Acta Metall. Mater. 41, 323 (1993).CrossRefGoogle Scholar
16.Greer, A.L., Karpe, N., and Bøttiger, J., J. Alloys Compd. 194, 199 (1993).CrossRefGoogle Scholar
17.Yang, F.L., Shih, W.C., and Greer, A.L., in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S.P., Børgensen, P., Townsend, P.H., Ross, C.A., and Volkert, C.A. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 21.Google Scholar
18.Stephenson, G.B., Acta Metall. 36, 2663 (1988).CrossRefGoogle Scholar
19.Noyan, I.C. and Goldsmith, C.C., Adv. X-ray Anal. 33, 137 (1990).Google Scholar
20.Malhotra, S.G., Rek, Z.U., Yalisov, S.M., and Bilello, J.C., Thin Solid Films 301, 45 (1997).CrossRefGoogle Scholar
21.Malhotra, S.G., Rek, Z.U., Yalisov, S.M., and Bilello, J.C., Thin Solid Films 301, 55 (1997).CrossRefGoogle Scholar
22.Noyan, I.C., Huang, T.C., and York, B.R., Crit. Rev. Solid State Mater. Sci. 20, 125 (1995).CrossRefGoogle Scholar
23.Kinbara, A. and Haraki, H., J. Appl. Phys. Japan 2, 328 (1965).Google Scholar
24.Ziegler, J.F., Biersack, J.P., and Littmark, U., The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985), Vol. 1.Google Scholar
25.Chinellato, V., Gottardi, V., Lo Russo, S., Mazzoldi, P., Nicoletti, F., and Polato, P., Radiat. Effects 65, 31 (1982).CrossRefGoogle Scholar
26.Arnold, G.W., Radiat. Effects 98, 55 (1986).CrossRefGoogle Scholar
27.Doolittle, L.R., Nucl. Instrum. Methods B 9, 334 (1985).CrossRefGoogle Scholar
28.Feder, R. and Berry, B.S., J. Appl. Crystallogr. 3, 372 (1970).CrossRefGoogle Scholar
29.Mack, M. and Parrish, W., Acta Crystallogr. 23, 693 (1967).CrossRefGoogle Scholar
30.Hall, M.M., Veeraraghavan, V.G., Rubin, H., and Winchell, P.G., J. Appl Crystallogr. 10, 66 (1977).CrossRefGoogle Scholar
31.Nye, J.F., Physical Properties of Crystals, their Representation by Tensors and Matrices (Clarendon Press, Oxford, United Kingdom, 1964).Google Scholar
32.Boyer, W. and Atzmon, M. (unpublished).Google Scholar
33.Clemens, B.M. and Bain, J.A., MRS Bull. 17, 46 (1992).CrossRefGoogle Scholar
34.Cornella, G., Lee, S-H., Nix, W.D., and Bravman, J.C., Appl. Phys. Lett. 71, 2949 (1997).CrossRefGoogle Scholar
35.Klug, H.P., Alexander, L.E., X-ray Diffraction Procedures For Polycrystalline and Amorphous Materials, 2nd ed. (John Wiley & Sons, New York, 1974).Google Scholar
36.Finegan, J.D. and Hoffman, R.W., in Eighth National Symposium on Vacuum Technology Transactions (Pergamon Press, New York, 1962), p. 935.Google Scholar
37.Flinn, P.A., Gardner, D.S., and Nix, W.D., IEEE Trans. Electron Devices, ED–34, 689 (1987).CrossRefGoogle Scholar
38.von Preissig, F.J., J. Appl. Phys. 66, 4262 (1989).CrossRefGoogle Scholar
39.Jost, W., Diffusion in Solids, Liquids, Gases (Academic Press, New York, 1960). Equation [1.334] has a typographical error; it should read DΠ = (ξ′)2/4γ′2 t; likewise in [1.335], γ″ should be γ″2.Google Scholar
40.Ruud, J.A., Witvrouw, A., and Spaepen, F., J. Appl. Phys. 74, 2517 (1993).CrossRefGoogle Scholar
41.Bain, J.A., Chyung, L.J., Brennan, S., and B.M.Clemens, Phys. Rev. B 44, 1184 (1991).CrossRefGoogle Scholar
42.Hollanders, M.A., Thijsse, B.J., and Mittemeijer, E.J., Phys. Rev. B 42, 5481 (1990).CrossRefGoogle Scholar
43.Noyan, I.C. and Cohen, J.B., Residual Stress: Measurement by Diffraction and Interpretation (Springer-Verlag, New York, 1987).CrossRefGoogle Scholar
44.Venkatraman, R., Besser, P.R., Bravman, J.C., and Brennan, S., J. Mater. Res. 9, 328 (1994).CrossRefGoogle Scholar
45.Thompson, C.V., in Polycrystalline Thin Films-Structure, Texture, Properties and Applications, edited by Barmak, K., Parker, M.A., Flow, J.A., Sinclair, R., and Smith, D.A. (Mater. Res. Soc. Symp. Proc. 343, Pittsburgh, PA, 1994), p. 3.Google Scholar
46.Cullity, B.D., Elements of X-ray Diffraction (Addison-Wesley, Reading, MA, 1956).Google Scholar
47.Knorr, D.B., J. Met. 44, 29 (1992).Google Scholar
48.Doerner, M.F. and Nix, W.D., CRC Crit. Rev. Solid State Mater. Sci. 14, 225 (1988). Additional reviews are cited therein.CrossRefGoogle Scholar
49.Smithells Metals Reference Book, edited by Brandes, E.A. and Brook, G.B. (Butterworth-Heinemann Ltd., London, United Kingdom, 1992).Google Scholar
50.Fisher Scientific, Pittsburgh, PA (personal communication).Google Scholar
51.Villars, P. and Calvert, L.D., Pearson's Handbook of Crystallographic Data for Intermetallic Phases, 2nd ed. (ASM International, Materials Park, OH, 1991).Google Scholar
52.Hoffman, R.W., Daniels, R.D., and Crittenden, E.C. Jr, Proc. Phys. Soc. 64, 497 (1954).CrossRefGoogle Scholar
53.Hoffman, R.W., Phys. Thin Films 3, 211 (1966).Google Scholar
54.Schulz, R., Trudeau, M.L., and van Neste, A., Mater. Sci. Eng. A A134, 1354 (1991).CrossRefGoogle Scholar
55.Cheng, Y.T., Nicolet, M.A., and Johnson, W.L., in Thin-Films—Interfaces and Phenomena, edited by Nemanich, R.J., Ho, P.S., and Lau, S.S. (Mater. Res. Soc. Symp. Proc. 54, Pittsburgh, PA, 1986), p. 174.Google Scholar
56.Klokholm, E. and Berry, B.S., J. Electrochem. Soc. 115, 823 (1968).CrossRefGoogle Scholar
57.d'Heurle, F.M., Int. Mater. Rev. 34, 53 (1989).59CrossRefGoogle Scholar
58.Künzi, H.U., Glassy Metals II, edited by Beck, H. and Güntherodt, H-J. (Springer, New York, 1983), p. 174.Google Scholar
59.Bauad, P.P., d'Heurle, F.M., Chevacharoenkul, S., and Irene, E.A., J. Vac. Sci. Technol. B 11, 304 (1993);CrossRefGoogle Scholar
d'Heurle, F.M., Defect Diffus. Forum 129–130, 137 (1996).CrossRefGoogle Scholar
60.Witvrouw, A., Volkert, C.A., and Spaepen, F., Mater. Sci. Eng. A 134, 1274 (1991).CrossRefGoogle Scholar
61.Russew, K., Sommer, F., Duhaj, P., and Bakonyi, I., J. Mater. Sci. 27, 3565 (1992).CrossRefGoogle Scholar
62.Sommer, F., Lang, T., and Predel, B., Z. Metall. 78, 648 (1987).Google Scholar
63.Spaepan, F., Rapidly Quenched Metals III, edited by Cantor, B. (Metals Society, London, United Kingdom, 1978), p. 253.Google Scholar
64.Ding, F., Averback, R.S., and Hahn, H., J. Appl. Phys. 64, 1785 (1988).CrossRefGoogle Scholar
65.Karpe, N., Bøttiger, J., Krog, J.P., Conyers, J.S., Greer, A.L., and Somekh, R.E., Philos. Mag. A 75, 461 (1997).CrossRefGoogle Scholar