Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T07:33:05.982Z Has data issue: false hasContentIssue false

Instrumented pyramidal and spherical indentation of polycrystalline graphite

Published online by Cambridge University Press:  03 March 2011

M. Sakai*
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Japan
Y. Nakano
Affiliation:
Department of Materials Science, Toyohashi University of Technology, Tempaku-cho, Toyohashi 441-8580, Japan
*
a)Address all correspondence to this author. This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/publications/jmr/policy.html e-mail: msakaitutms.tut.ac.jp
Get access

Abstract

The elastoplastic surface deformation of a polycrystalline graphite was studied by examining the indenter’s geometry dependence of load P versus penetration depth h relation (Ph relation) in instrumented pyramidal/spherical indentation tests. The tetrahedral pyramid indenters included inclined face angles β of 10.0°, 22.0° (Vickers pyramid), and 40.0°. The tip radius of spherical indenters used were 32 μm, 200 μm, 794 μm, 1.59 mm, and 6.35 mm. The true hardness H as a measure for plasticity was singled out of the elastoplastic loading parameter k1 in the quadratic expression of P = k1h2 and then quantitatively related to the yield stress Y that was determined from the mean contact pressure for spherical indentation at the onset of plastic yielding. The size effect of Y, decreasing with the increase in the tip radius of spherical indenter, is discussed using the model of geometrically necessary dislocations in terms of the material length scales for a plastic field with strain gradient.

Type
Articles
Copyright
Copyright © Materials Research Society 2004

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Kelly, B.T., Physics of Graphite (Applied Science, London, 1981), Chapters 1–3.Google Scholar
2.Sakai, M., Urashima, K. and Inagaki, M., J. Am. Ceram. Soc. 66 868 (1983).CrossRefGoogle Scholar
3.Sakai, M. and Bradt, R.C. in Graphical Methods for Determining the Nonlinear Fracture Parameters of Silica and Graphite Refractory Composites, edited by Bradt, R.C., Evans, A.G., Hasselman, D.P.H., and Lange, F.F. (Plenum, New York, 1986), Vol. 7, pp. 127142.Google Scholar
4.Sakai, M., Yoshimura, J., Goto, Y. and Inagaki, M., J. Am. Ceram. Soc. 71 609 (1988).CrossRefGoogle Scholar
5.Sakai, M. and Inagaki, M., J. Am. Ceram. Soc. 72 388 (1989).CrossRefGoogle Scholar
6.Evans, A.G. and Faber, K.T., J. Am. Ceram. Soc. 67 255 (1984).CrossRefGoogle Scholar
7.Hutchinson, J.W., Acta Metall. 35 1605 (1987).CrossRefGoogle Scholar
8.Sakai, M., Nakano, Y. and Shimizu, S., J. Am. Ceram. Soc. 85 1522 (2002).CrossRefGoogle Scholar
9.Sakai, M., Carbon Alloys, edited by Yasuda, E., Inagaki, M., Kaneko, K., Endo, M., Oya, A., and Tanabe, Y. (Elsevier, Oxford, U.K., 2003), Chapter 22.Google Scholar
10.Fleck, N.A. and Hutchinson, J.W., J. Mech. Phys. Solids 41 1825 (1993).CrossRefGoogle Scholar
11.Fleck, N.A., Muller, G.M., Ashby, M.F. and Hutchinson, J.W., Acta Metall. Mater. 42 475 (1994).CrossRefGoogle Scholar
12.Nix, W.D. and Gao, H-J., J. Mech. Phys. Solids 46 411 (1998).CrossRefGoogle Scholar
13.Sakai, M., Acta Metall. Mater. 41 1751 (1993).CrossRefGoogle Scholar
14.Sakai, M., Shimizu, S. and Ishikawa, T., J. Mater. Res. 14 1471 (1999).CrossRefGoogle Scholar
15.Soule, D.E. and Nezbeda, C.W., J. Appl. Phys. 39 5122 (1968).CrossRefGoogle Scholar
16.Snyder, S.R., Gerberich, W.W. and White, H.S., Phys. Rev. B 47 10823 (1993).CrossRefGoogle Scholar
17.Field, J.S. and Swain, M.V., Carbon 34 1357 (1996).CrossRefGoogle Scholar
18.Sakai, M., J. Mater. Res. 14 3630 (1999).CrossRefGoogle Scholar
19.Loubet, J.L., Georges, J.M. and Meille, G., Microindentation Techniques in Materials Science and Engineering, ASTM STP889, edited by Blau, P.J. and Lawn, B.R. (American Society for Testing and Materials, Philadelphia, 1986), pp. 7289.Google Scholar
20.Sakai, M. and Nakano, Y., J. Mater. Res. 17 2161 (2002).CrossRefGoogle Scholar
21.Sakai, M., J. Mater. Res. 18 1631 (2003).CrossRefGoogle Scholar
22.Shorshorov, M. Kh., Bulychev, S.I. and Alekhim, V.P., Sov. Phys. Dokl. 26 769 (1981).Google Scholar
23.Doerner, M.F. and Nix, W.D., J. Mater. Res. 1 601 (1986).CrossRefGoogle Scholar
24.Pharr, G.M., Oliver, W.C. and Brotzen, F.R., J. Mater. Res. 7 613 (1992).CrossRefGoogle Scholar
25.Lawn, B.R. and Howes, V.R., J. Mater. Sci. 16 2745 (1981).CrossRefGoogle Scholar
26.Tabor, D., Hardness of Metals (Oxford University Press, London, 1951), Chapter IV.Google Scholar
27.Johnson, K.L., Contact Mechanics (Cambridge University Press, Cambridge, 1985), Chap. 5.CrossRefGoogle Scholar
28.Sneddon, I.N., Int. J. Eng. Sci. 3 47 (1965).CrossRefGoogle Scholar
29.Huang, Y., Zhang, L., Guo, T.F. and Hwang, K-C., J. Mech. Phys. Solids 45 439 (1997).CrossRefGoogle Scholar
30.Ma, Q. and Clarke, D.R., J. Mater. Res. 10 853 (1995).CrossRefGoogle Scholar
31.Nix, W.D., Metal Trans. 20A 2217 (1989).CrossRefGoogle Scholar
32.Stölken, J.S. and Evans, A.G., Acta Mater. 46 5109 (1998).CrossRefGoogle Scholar
33.Swain, M.V. and Wittling, M., Fract. Mech. Ceramic. 11 379 (1996).Google Scholar
34.Iost, A. and Bigot, R., J. Mater. Sci. 31 3573 (1996).CrossRefGoogle Scholar
35.Horstmeyer, M.F., Baskes, M.I. and Plimpton, S.J., Acta Mater. 49 4363 (2001).CrossRefGoogle Scholar
36.Shi, H. and Atkinson, M., J. Mater. Sci. 25 2111 (1990).CrossRefGoogle Scholar
37.Li, H., Gosh, A., Han, Y. and Bradt, R.C., J. Mater. Res. 8 1028 (1993).CrossRefGoogle Scholar
38.Sargent, P.M., Microindentation Techniques in Materials Science and Engineering, ASTM STP889, edited by Blau, P.J. and Lawn, B.R.. (American Society for Testing and Materials, Philadelphia, 1986.) pp. 160174.Google Scholar
39.Sakai, M., Akatsu, T., Numata, S. and Matsuda, K., J. Mater. Res. 18 2087 (2003).CrossRefGoogle Scholar