Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T09:03:36.459Z Has data issue: false hasContentIssue false

Insights on uniaxial compression of WS2 inorganic fullerenes: A finite element study

Published online by Cambridge University Press:  15 August 2011

Estelle Kalfon-Cohen
Affiliation:
Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
David Barlam
Affiliation:
Department of Mechanical Engineering, Ben Gurion University of the Negev, Beer Sheva 84105, Israel
Ofer Tevet
Affiliation:
Department of Materials and Interfaces, Weizmann Institute of Science, Rehovot 76100, Israel
Sidney R. Cohen*
Affiliation:
Department of Chemical Research Support, Weizmann Institute of Science, Rehovot 76100, Israel
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We report here a finite element simulation of the compression of inorganic WS2 hollow nanoparticles. The particle was modeled as a multilayered polyhedron to investigate the effect of the unique onion-like and highly faceted structure in the mechanical response. The simulation revealed the central role of the faceted structure of the WS2 nanoparticles in the mode of failure. The stress magnitude and distribution was shown to be size dependent, as predicted from previously published experimental results. Moreover, the simulation points to the influence of the layered structure on the energy release during compression loading via interlayer shear.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tenne, R.: Inorganic nanotubes and fullerene-like particles. Nat. Nanotechnol. 1, 103 (2006).CrossRefGoogle Scholar
2.Feldman, Y., Zak, A., Popovitz-Biro, R., and Tenne, R.: New reactor for production of tungsten disulfide onion-like nanoparticles. Solid State Sci. 2, 663 (2000).CrossRefGoogle Scholar
3.Kaplan-Ashiri, I. and Tenne, R.: Mechanical properties of WS2 nanotubes. J. Cluster Sci. 18, 549 (2007).CrossRefGoogle Scholar
4.Kaplan-Ashiri, I., Cohen, S.R., Gartsman, K., Rosentsveig, R., Seifert, G., and Tenne, R.: Mechanical behavior of individual WS2 nanotubes. J. Mater. Res. 19, 454 (2004).CrossRefGoogle Scholar
5.Kalfon-Cohen, E., Goldbart, O., Schreiber, R., Cohen, S.R., Barlam, D., Lorenz, T., Enyashin, A., and Seifert, G.: Radial compression studies of WS2 nanotubes in the elastic regime. J. Vac. Sci. Technol., B 29, 021009 (2011).CrossRefGoogle Scholar
6.Kalfon-Cohen, E., Goldbart, O., Schreiber, R., Cohen, S.R., Barlam, D., Lorenz, T., Joswig, J-O., and Seifert, G.: Experimental, finite element and density-functional theory study of inorganic nanotube compression. Appl. Phys. Lett. 98, 081908 (2011).CrossRefGoogle Scholar
7.Nagapriya, K.S., Goldbart, O., Kaplan-Ashiri, I., Seifert, G., Tenne, R., and Joselevich, E.: Torsional stick-slip behavior in WS2 nanotubes. Phys. Rev. Lett. 101, 195501 (2008).CrossRefGoogle ScholarPubMed
8.Stefanov, M., Enyashin, A.N., Heine, T., and Seifert, G.: Nanolubrication: How do MoS2-based nanostructures lubricate? J. Phys. Chem. C 112, 17764 (2008).CrossRefGoogle Scholar
9.Joly-Pottuz, L., Martin, J.M., Dassenoy, F., Belin, M., Montagnac, G., Reynard, B., and Fleischer, N.: Pressure-induced exfoliation of inorganic fullerene-like WS2 particles in a Hertzian contact. J. Appl. Phys. 99, 023524 (2006).CrossRefGoogle Scholar
10.Leshchinsky, V., Popovitz-Biro, R., Gartsman, K., Rosentsveig, R., Rosenberg, Y., Tenne, R., and Rapoport, L.: Behavior of solid lubricant nanoparticles under compression. J. Mater. Sci. 39, 4119 (2004).CrossRefGoogle Scholar
11.Schwarz, U.S., Komura, S., and Safran, S.A.: Deformation and tribology of multi-walled hollow nanoparticles. Europhys. Lett. 50, 762 (2000).CrossRefGoogle Scholar
12.Srolovitz, D.J., Safran, S.A., Homyonfer, M., and Tenne, R.: Morphology of nested fullerenes. Phys. Rev. Lett. 74, 1779 (1995).CrossRefGoogle ScholarPubMed
13.Tevet, O., Goldbart, O., Cohen, S.R., Rosentsveig, R., Popovitz-Biro, R., Wagner, H.D., and Tenne, R.: Nanocompression of individual multilayered polyhedral nanoparticles. Nanotechnology 21, 3637005 (2010).CrossRefGoogle ScholarPubMed
14.Lahouij, I., Dassenoy, F., de Knoop, L., Martin, J.M., and Vacher, B.: In situ TEM observation of the behavior of an individual fullerene-like MoS2 nanoparticle in a dynamic contact. Tribol. Lett. 42, 133 (2011).CrossRefGoogle Scholar
15.Enyashin, A.N., Gemming, S., Bar-Sadan, M., Popovitz-Biro, R., YouHong, S., Prior, Y., Tenne, R., and Seifert, G.: Structure and stability of molybdenum sulfide fullerenes. Angew. Chem. Int. Ed. 46, 623 (2007).CrossRefGoogle ScholarPubMed
16.Zhang, D-B., Dumitrică, T., and Seifert, G.: Helical nanotube structures of MoS2 with intrinsic twisting: An objective molecular dynamics study. Phys. Rev. Lett. 104, 65502 (2010).CrossRefGoogle ScholarPubMed
17.Teich, D., Lorenz, T., Joswig, J-O., Seifert, G., Zhang, D-B., and Dumitrica, T.: Structural and electronic properties of helical TiS2 nanotubes studied with objective molecular dynamics. J. Phys. Chem. C 115, 6392 (2011).CrossRefGoogle Scholar