Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-03T08:33:27.818Z Has data issue: false hasContentIssue false

Influence of the deformation rate on phase stability and mechanical properties of a Ti–29Nb–13Ta–4.6Zr–xO alloy analyzed by in situ high-energy X-ray diffraction during compression tests

Published online by Cambridge University Press:  18 June 2020

Murillo R. da Silva
Affiliation:
Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, SP13565-905, Brazil IFW Dresden, Institute for Complex Materials, 01069Dresden, Germany
Piter Gargarella*
Affiliation:
Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, SP13565-905, Brazil Department of Materials Engineering, Federal University of São Carlos, São Carlos, SP13565-905, Brazil
Athos H. Plaine
Affiliation:
Department of Mechanical Engineering, State University of Santa Catarina – UDESC, Joinville, SC89223-100, Brazil
Rodrigo J. Contieri
Affiliation:
School of Applied Science, University of Campinas – UNICAMP, Campinas, SP13083-970, Brazil
Simon Pauly
Affiliation:
Faculty of Engineering, University of Applied Sciences Aschaffenburg, 63743Aschaffenburg, Germany
Uta Kühn
Affiliation:
IFW Dresden, Institute for Complex Materials, 01069Dresden, Germany
Claudemiro Bolfarini
Affiliation:
Graduate Program in Materials Science and Engineering, Federal University of São Carlos, São Carlos, SP13565-905, Brazil Department of Materials Engineering, Federal University of São Carlos, São Carlos, SP13565-905, Brazil
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this work, a Ti–29Nb–13Ta–4.6Zr–xO Gum Metal with two significantly different oxygen levels (388 and 3570 ppm) was investigated during deformation. The alloys were compressed during in situ high-energy X-ray diffraction using three different strain rates, 10−4, 10−3, and 10−1 s−1, in order to evaluate their influence on phase stability and mechanical properties. The influence of oxygen on the deformation process was also studied. Deformation takes place by twinning, stress-induced, and reverse martensitic transformation and was observed, for some samples, a spinodal decomposition of the β-phase during elastic deformation. The mechanical properties were similar for the different rates employed when considering the same oxygen level. The alloy with a higher amount of oxygen, however, showed a substantial increase in mechanical strength, with a yield strength of around 680 MPa, which is more than three times higher than for the specimen with 388 ppm of oxygen.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achache, S., Lamri, S., Alhussein, A., Billard, A., François, M., and Sanchette, F.: Gum metal thin films obtained by magnetron sputtering of a Ti-Nb-Zr-Ta target. Mater. Sci. Eng. A 673, 492502 (2016).10.1016/j.msea.2016.07.096CrossRefGoogle Scholar
Abdel-Hady, M., Hinoshita, K., and Morinaga, M.: General approach to phase stability and elastic properties of β-type Ti-alloys using electronic parameters. Scr. Mater. 55, 477480 (2006).10.1016/j.scriptamat.2006.04.022CrossRefGoogle Scholar
Strasky, J., Harcuba, P., Vaclavova, K., Horvath, K., Landa, M., Srba, O., and Janecek, M.: Increasing strength of a biomedical Ti-Nb-Ta-Zr alloy by alloying with Fe, Si and O. J. Mech. Behav. Biomed. Mater. 71, 329336 (2017).10.1016/j.jmbbm.2017.03.026CrossRefGoogle ScholarPubMed
Bönisch, M., Panigrahi, A., Stoica, M., Calin, M., Ahrens, E., Zehetbauer, M., Skrotzki, W., and Eckert, J.: Giant thermal expansion and α-precipitation pathways in Ti-alloys. Nat. Commun. 8, 1429 (2017).CrossRefGoogle ScholarPubMed
Zhang, L.C. and Chen, L.Y.: A review on biomedical titanium alloys: Recent progress and prospect. Adv. Eng. Mater. 21, 1801215 (2019).10.1002/adem.201801215CrossRefGoogle Scholar
Zhang, L.-C., Chen, L.-Y., and Wang, L.: Surface modification of titanium and titanium alloys: Technologies, developments, and future interests. Adv. Eng. Mater., 22(5), 1901258 (2020).10.1002/adem.201901258CrossRefGoogle Scholar
Batalha, R.L., Batalha, W.C., Deng, L., Gustmann, T., Pauly, S., Kiminami, C.S., and Gargarella, P.: Processing a biocompatible Ti–35Nb–7Zr–5Ta alloy by selective laser melting. J. Mater. Res. 35, 11431153 (2020).10.1557/jmr.2020.90CrossRefGoogle Scholar
Li, B.-Q., Li, X.-C., and Lu, X.: Microstructure and compressive properties of porous Ti–Nb–Ta–Zr alloy for orthopedic applications. J. Mater. Res. 34, 40454055 (2019).10.1557/jmr.2019.361CrossRefGoogle Scholar
Saito, T., Furuta, T., Hwang, J.H., Kuramoto, S., Nishino, K., Suzuki, N., Chen, R., Yamada, A., Ito, K., Seno, Y., Nonaka, T., Ikehata, H., Nagasako, N., Iwamoto, C., Ikuhara, Y., and Sakuma, T.: Multifunctional alloys obtained via a dislocation-free plastic deformation mechanism. Science 300, 464467 (2003).10.1126/science.1081957CrossRefGoogle Scholar
Nagasako, N., Asahi, R., Isheim, D., Seidman, D.N., Kuramoto, S., and Furuta, T.: Microscopic study of gum-metal alloys: A role of trace oxygen for dislocation-free deformation. Acta Mater. 105, 347354 (2016).10.1016/j.actamat.2015.12.011CrossRefGoogle Scholar
Tane, M., Nakano, T., Kuramoto, S., Hara, M., Niinomi, M., Takesue, N., Yano, T., and Nakajima, H.: Low Young's modulus in Ti–Nb–Ta–Zr–O alloys: Cold working and oxygen effects. Acta Mater. 59, 69756988 (2011).10.1016/j.actamat.2011.07.050CrossRefGoogle Scholar
Premkumar, M., Himabindu, V.S., Banumathy, S., Bhattacharjee, A., and Singh, A.K.: Effect of mode of deformation by rolling on texture evolution and yield locus anisotropy in a multifunctional β titanium alloy. Mater. Sci. Eng. A 552, 1523 (2012).10.1016/j.msea.2012.04.077CrossRefGoogle Scholar
Furuta, T., Hara, M., Horita, Z., and Kuramoto, S.: Severe plastic deformation in gum metal with composition at the structural stability limit. Int. J. Mater. Res. 100, 12171221 (2009).10.3139/146.110184CrossRefGoogle Scholar
Morinaga, M., Kato, M., Kamimura, T., Fukumoto, M., Harada, I., and Kubo, K.: Theoretical design of β-type titanium alloys. In Proceedings of Seventh World Conference on Titanium, (Titanium’ 92, Science and Technology, San Diego, CA, USA, 1992); pp. 217–224.Google Scholar
Plaine, A.H., da Silva, M.R., and Bolfarini, C.: Tailoring the microstructure and mechanical properties of metastable Ti–29Nb–13Ta–4.6Zr alloy for self-expansible stent applications. J. Alloys Compd. 800, 3540 (2019).CrossRefGoogle Scholar
Jawed, S.F., Rabadia, C.D., Liu, Y.J., Wang, L.Q., Li, Y.H., Zhang, X.H., and Zhang, L.C.: Mechanical characterization and deformation behavior of β-stabilized Ti-Nb-Sn-Cr alloys. J. Alloys Compd. 792, 684693 (2019).10.1016/j.jallcom.2019.04.079CrossRefGoogle Scholar
Jawed, S.F., Rabadia, C.D., Liu, Y.J., Wang, L.Q., Li, Y.H., Zhang, X.H., and Zhang, L.C.: Beta-type Ti-Nb-Zr-Cr alloys with large plasticity and significant strain hardening. Mater. Des. 181, 108064 (2019).CrossRefGoogle Scholar
Málek, J., Hnilica, F., Bartáková, S., Míka, P., and Veselý, J.: The effect of different forms of oxygen on properties of beta titanium alloys. Acta Polytech. 58, 179183 (2018).CrossRefGoogle Scholar
Martins, J.R.S. Jr., Araujo, R.O., Donato, T.A.G., Arana-Chavez, V.E., Buzalaf, M.A.R., and Grandini, C.R.: Influence of oxygen content and microstructure on the mechanical properties and biocompatibility of Ti-15 wt%Mo alloy used for biomedical applications. Materials 7, 232243 (2014).CrossRefGoogle ScholarPubMed
Niinomi, M., Nakai, M., Hendrickson, M., Nandwana, P., Alam, T., Choudhuri, D., and Banerjee, R.: Influence of oxygen on omega phase stability in the Ti-29Nb-13Ta-4.6Zr alloy. Scr. Mater. 123, 144148 (2016).CrossRefGoogle Scholar
Vicente, F.B., Correa, D.R.N., Donato, T.A.G., Arana-Chavez, V.E., Buzalaf, M.A.R., and Grandini, C.R.: The Influence of small quantities of oxygen in the structure, microstructure, hardness, elasticity modulus and cytocompatibility of Ti-Zr alloys for dental applications. Materials 7, 542553 (2014).10.3390/ma7010542CrossRefGoogle ScholarPubMed
Wei, L.S., Kim, H.Y., and Miyazaki, S.: Effects of oxygen concentration and phase stability on nano-domain structure and thermal expansion behavior of Ti–Nb–Zr–Ta–O alloys. Acta Mater. 100, 313322 (2015).CrossRefGoogle Scholar
Plaine, A.H., da Silva, M.R., and Bolfarini, C.: Microstructure and elastic deformation behavior of β-type Ti-29Nb-13Ta-4.6Zr with promising mechanical properties for stent applications. J. Mater. Res. Technol. 8, 38523858 (2019).10.1016/j.jmrt.2019.06.047CrossRefGoogle Scholar
Wang, L., Qu, J., Chen, L., Meng, Q., Zhang, L.-C., Qin, J., Zhang, D., and Lu, W.: Investigation of deformation mechanisms in β-type Ti-35Nb-2Ta-3Zr alloy via FSP leading to surface strengthening. Metall. Mater. Trans. A 46, 48134818 (2015).10.1007/s11661-015-3089-8CrossRefGoogle Scholar
Salvador, C.A.F., Opini, V.C., Lopes, E.S.N., and Caram, R.: Microstructure evolution of Ti–30Nb–(4Sn) alloys during classical and step-quench aging heat treatments. Mater. Sci. Technol. 33, 400407 (2016).CrossRefGoogle Scholar
Meng, Q., Zhang, J., Huo, Y., Sui, Y., Zhang, J., Guo, S., and Zhao, X.: Design of low modulus β-type titanium alloys by tuning shear modulus C44. J. Alloys Compd. 745, 579585 (2018).CrossRefGoogle Scholar
Chen, W., Song, Z., Xiao, L., Sun, Q., Sun, J., and Ge, P.: Effect of prestrain on microstructure and mechanical behavior of aged Ti–10V–2Fe–3Al alloy. J. Mater. Res. 24, 28992908 (2011).10.1557/jmr.2009.0332CrossRefGoogle Scholar
Guo, W., Quadir, M.Z., Moricca, S., Eddows, T., and Ferry, M.: Microstructural evolution and final properties of a cold-swaged multifunctional Ti–Nb–Ta–Zr–O alloy produced by a powder metallurgy route. Mater. Sci. Eng. A 575, 206216 (2013).CrossRefGoogle Scholar
Besse, M., Castany, P., and Gloriant, T.: Mechanisms of deformation in gum metal TNTZ-O and TNTZ titanium alloys: A comparative study on the oxygen influence. Acta Mater. 59, 59825988 (2011).10.1016/j.actamat.2011.06.006CrossRefGoogle Scholar
Song, X., Wang, L., Niinomi, M., Nakai, M., Liu, Y., and Zhu, M.: Microstructure and fatigue behaviors of a biomedical Ti–Nb–Ta–Zr alloy with trace CeO2 additions. Mater. Sci. Eng. A 619, 112118 (2014).CrossRefGoogle Scholar
Plaine, A.H., da Silva, M.R., and Bolfarini, C.: Effect of thermo-mechanical treatments on the microstructure and mechanical properties of the metastable β-type Ti-35Nb-7Zr-5Ta alloy. Mat. Res. 22, e20180462 (2018).CrossRefGoogle Scholar
Talling, R.J., Dashwood, R.J., Jackson, M., and Dye, D.: On the mechanism of superelasticity in gum metal. Acta Mater. 57, 11881198 (2009).CrossRefGoogle Scholar
Gustafson, T.W., Panda, P.C., Song, G., and Raj, R.: Influence of microstructural scale on plastic flow behavior of metal matrix composites. Acta Mater. 45, 16331643 (1997).CrossRefGoogle Scholar
Hou, Y.P., Guo, S., Qiao, X.L., Tian, T., Meng, Q.K., Cheng, X.N., and Zhao, X.Q.: Origin of ultralow Youngs modulus in a metastable β-type Ti-33Nb-4Sn alloy. J. Mech. Behav. Biomed. 59, 220225 (2016).10.1016/j.jmbbm.2015.12.037CrossRefGoogle Scholar
Banerjee, S., Tewari, R., and Dey, G.K.: Omega phase transformation – Morphologies and mechanisms. Int. J. Mater. Res. 97, 963967 (2006).CrossRefGoogle Scholar
Xing, H. and Sun, J.: Mechanical twinning and omega transition by ⟨111⟩ {112} shear in a metastable β titanium alloy. Appl. Phys. Lett. 93, 031908 (2008).CrossRefGoogle Scholar
Afonso, C.R.M., Amigo, A., Stolyarov, V., Gunderov, D., and Amigo, V.: From porous to dense nanostructured β-Ti alloys through high-pressure torsion. Sci Rep. 7, 13618 (2017).CrossRefGoogle ScholarPubMed
Bönisch, M.: Structural Properties, Deformation Behavior and Thermal Stability of Martensitic Ti-Nb Alloys. (Fakultat Mathematik und Naturwissenschaften, Technischen Universität Dresden, Dresden, 2016); p. 160.Google Scholar
Mebed, A.M., Koyama, T., and Miyazaki, T.: Spinodal decomposition existence of the β Ti–Cr binary alloy computer simulation of the real alloy system and experimental investigations. Comput. Mater. Sci. 14, 318322 (1999).CrossRefGoogle Scholar
Rios, O. and Ebrahimi, F.: Spinodal decomposition of the γ-phase upon quenching in the Ti–Al–Nb ternary alloy system. Intermetallics 19, 9398 (2011).CrossRefGoogle Scholar
Zhang, R.F. and Veprek, S.: On the spinodal nature of the phase segregation and formation of stable nanostructure in the Ti–Si–N system. Mater. Sci. Eng. A 424, 128137 (2006).CrossRefGoogle Scholar
Devaraj, A., Nag, S., Srinivasan, R., Williams, R.E.A., Banerjee, S., Banerjee, R., and Fraser, H.L.: Experimental evidence of concurrent compositional and structural instabilities leading to ω precipitation in titanium–molybdenum alloys. Acta Mater. 60, 596609 (2012).CrossRefGoogle Scholar
Afonso, C.R.M., Ferrandini, P.L., Ramirez, A.J., and Caram, R.: High resolution transmission electron microscopy study of the hardening mechanism through phase separation in a β-Ti-35Nb-7Zr-5Ta alloy for implant applications. Acta Biomater. 6, 16251629 (2010).CrossRefGoogle Scholar
Kheradmandfard, M., Kashani-Bozorg, S.F., Kang, K.H., Penkov, O.V., Hanzaki, A.Z., Pyoun, Y.S., Amanov, A., and Kim, D.E.: Simultaneous grain refinement and nanoscale spinodal decomposition of β phase in Ti-Nb-Ta-Zr alloy induced by ultrasonic mechanical impacts. J. Alloys Compd. 738, 540549 (2018).CrossRefGoogle Scholar
Zafari, A., Wei, X.S., Xu, W., and Xia, K.: Formation of nanocrystalline β structure in metastable beta Ti alloy during high pressure torsion: The role played by stress induced martensitic transformation. Acta Mater. 97, 146155 (2015).10.1016/j.actamat.2015.06.042CrossRefGoogle Scholar
Ivasishin, O.M., Markovsky, P.E., Semiatin, S.L., and Ward, C.H.: Aging response of coarse- and fine-grained β titanium alloys. Mater. Sci. Eng. A 405, 296305 (2005).CrossRefGoogle Scholar
Mantani, Y. and Tajima, M.: Phase transformation of quenched α″ martensite by aging in Ti–Nb alloys. Mater. Sci. Eng. A 438–440, 315319 (2006).CrossRefGoogle Scholar
Cremasco, A., Andrade, P.N., Contieri, R.J., Lopes, E.S.N., Afonso, C.R.M., and Caram, R.: Correlations between aging heat treatment, ω phase precipitation and mechanical properties of a cast Ti–Nb alloy. Mater. Des. 32, 23872390 (2011).CrossRefGoogle Scholar
Malinov, S., Shaa, W., Guoa, Z., Tangb, C.C., and Longa, A.E.: Synchrotron X-ray diffraction study of the phase transformations in titanium alloys. Mater. Charact. 48, 279295 (2002).10.1016/S1044-5803(02)00286-3CrossRefGoogle Scholar
Lütjering, G. and Williams, J.C.: Titanium, 2nd ed. (Springer-Verlag, Newyork, 2007); p. 449.Google Scholar
Williams, J.C., Hickman, B.S., and Marcus, H.L.: The effect of omega phase on the mechanical properties of titanium alloys. Metall. Trans. 2, 19131919 (1970).Google Scholar
Wei, Q., Wang, L., Fu, Y., Qin, J., Lu, W., and Zhang, D.: Influence of oxygen content on microstructure and mechanical properties of Ti–Nb–Ta–Zr alloy. Mater. Des. 32, 29342939 (2011).10.1016/j.matdes.2010.11.049CrossRefGoogle Scholar
Yan, M., Xu, W., Dargusch, M.S., Tang, H.P., Brandt, M., and Qian, M.: Review of effect of oxygen on room temperature ductility of titanium and titanium alloys. Powder Metall. 57, 251257 (2014).10.1179/1743290114Y.0000000108CrossRefGoogle Scholar
Zhang, X., Wang, W., and Sun, J.: Formation of {332}〈113〉β twins from parent {130}〈310〉α″ plastic twins in a full α″ Ti-Nb alloy by annealing. Mater. Charact. 145, 724729 (2018).CrossRefGoogle Scholar
Hafeez, N., Liu, S., Lu, E., Wang, L., Liu, R., lu, W., and Zhang, L.-C.: Mechanical behavior and phase transformation of β-type Ti-35Nb-2Ta-3Zr alloy fabricated by 3D-printing. J. Alloys Compd. 790, 117126 (2019).CrossRefGoogle Scholar
Yang, Y., Li, G.P., Wang, H., Wu, S.Q., Zhang, L.C., Li, Y.L., and Yang, K.: Formation of zigzag-shaped {112}⟨111⟩ β mechanical twins in Ti–24.5Nb–0.7Ta–2Zr–1.4O alloy. Scr. Mater. 66, 211214 (2012).CrossRefGoogle Scholar
Supplementary material: File

da Silva et al. Supplementary Materials

da Silva et al. Supplementary Materials

Download da Silva et al. Supplementary Materials(File)
File 418 KB