Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-28T11:20:52.278Z Has data issue: false hasContentIssue false

Influence of temperature on tensile behavior of multiwalled carbon nanotube modified epoxy nanocomposites

Published online by Cambridge University Press:  27 August 2014

Aroor Revathi
Affiliation:
Centre for Societal Missions & Special Technologies, CSIR-National Aerospace Laboratories, Bangalore 560017, India
Sandhya Rao*
Affiliation:
Centre for Societal Missions & Special Technologies, CSIR-National Aerospace Laboratories, Bangalore 560017, India
Kavitha V. Rao*
Affiliation:
Centre for Societal Missions & Special Technologies, CSIR-National Aerospace Laboratories, Bangalore 560017, India
Myadam Rajendra Prakash
Affiliation:
Centre for Societal Missions & Special Technologies, CSIR-National Aerospace Laboratories, Bangalore 560017, India
Mohanraj Sendil Murugan
Affiliation:
Centre for Societal Missions & Special Technologies, CSIR-National Aerospace Laboratories, Bangalore 560017, India
Shylaja Srihari
Affiliation:
Centre for Societal Missions & Special Technologies, CSIR-National Aerospace Laboratories, Bangalore 560017, India
Gidnahalli Narayana Reddy Dayananda
Affiliation:
Centre for Societal Missions & Special Technologies, CSIR-National Aerospace Laboratories, Bangalore 560017, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

An investigation was carried out to characterize the tensile behavior of multiwalled carbon nanotube (MWCNT) modified epoxy nanocomposites in the glassy, viscoelastic, and rubbery regimes. 1 and 2 wt% MWCNT predispersed epoxy was used in this study. The cured samples were characterized using dynamic mechanical analysis for selection of different temperatures. The stress–strain behavior and toughness were determined in the temperature band of 25–140 °C. Addition of 1% CNT resulted in 16% improvement in the storage modulus at glassy state but 6% reduction in storage modulus was seen for 2% CNT-epoxy system. Tensile results showed that the strength and modulus have improved for 1% CNT-epoxy system. This study also revealed that for all the three systems, failure strain was maximum near the glass transition temperature (Tg) and significantly reduced above Tg. Also the CNT-modified epoxies showed improved toughness.

Type
Articles
Copyright
Copyright © Materials Research Society 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Smith, T.L.: Ultimate tensile properties of elastomers. J. Polym. Sci., Part A 1, 3597 (1963).Google Scholar
Smith, T.L.: Deformation and failure of plastics and elastomers. Polym. Eng. Sci. 5, 270 (1965).Google Scholar
Chia-Tai, K., Yip, M.C., and Chiang, K.N.: Time and temperature-dependent mechanical behavior of underfill materials in electronic packaging application. Microelectron. Reliab. 44, 627 (2004).Google Scholar
Barber, A.H., Cohen, S., and Wagner, H.D.: Measurement of carbon nanotube-polymer interfacial strength. Appl. Phys. Lett. 82, 4140 (2003).Google Scholar
Gojny, F.H., Nastalczyk, J., Roslaniec, Z., and Schulte, K.: Surface modified carbon nanotubes in CNT/epoxy-composites. Chem. Phys. Lett. 370, 820 (2003).CrossRefGoogle Scholar
Gojny, F.H., Wichmann, M.H.G., Fiedler, B., and Schulte, K.: Influence of different carbon nanotubes on the mechanical properties of epoxy matrix composites – A comparative study. Compos. Sci. Technol. 65, 2300 (2005).Google Scholar
Gojny, F.H., Wichmann, M.H.G., Kopke, U., Fiedler, B., and Schulte, K.: Carbon nanotube-reinforced epoxy-composites: Enhanced stiffness and fracture toughness at low nanotube content. Compos. Sci. Technol. 64, 2363 (2004).Google Scholar
McClung, A.J.W., Tandon, G.P., and Baur, J.W.: Strain rate and temperature-dependent tensile properties of an epoxy-based, thermosetting, shape memory polymer (Veriflex-E). Mech. Time-Dep. Mater. 16, 205 (2012).Google Scholar
Diane, M. and Rousseau, I.A.: Effect of deformation temperature on the shape memory behavior of epoxy networks. Macromol. Mater. Eng. 295, 726 (2010).Google Scholar
Smith, K.E., Sawicki, S., Hyjek, M.A., Downey, S., and Gall, K.: The effect of the glass transition temperature on the toughness of photopolymerizable (meth)acrylate networks under physiological conditions. Polymer 50(21), 5112 (2009).CrossRefGoogle ScholarPubMed
Smith, K.E., Temenoff, J.S., and Gall, K.: On the toughness of photopolymerizable (meth)acrylate networks for biomedical applications. J. Appl. Polym. Sci. 114, 2711 (2009).CrossRefGoogle Scholar
Laua, K.T. and Qiang, S.S.: Failure mechanisms of carbon nanotube/epoxy composites pre-treated in different temperature environments. Carbon 40, 2961 (2002).Google Scholar
Abdalla, M., Dean, D., David, A., Nyairo, E., Robinson, P., and Thompson, G.: The effect of interfacial chemistry on molecular mobility and morphology of MWCNT/epoxy nanocomposite. Polymer 48, 5662 (2007).Google Scholar
Gojny, F.H. and Schulte, K.: Functionalisation effect on the thermo-mechanical behavior of MWCNT/epoxy-composites. Compos. Sci. Technol. 64, 2303 (2004).Google Scholar
Di Prima, M.A., Lesniewski, M., Gall, K., McDowell, D.L., Sanderson, T., and Campbell, D.: Thermo-mechanical behavior of epoxy shape memory polymer foams. Smart Mater. Struct. 16, 2330 (2007).Google Scholar
Yakacki, C.M., Willis, S., Luders, C., and Gall, K.: Deformation limits in shape memory polymers. Adv. Eng. Mater. 10, 112 (2008).Google Scholar
Sekhar Samal, S.: Role of temperature and carbon nanotube reinforcement on epoxy based nanocomposites. J. Miner. Mater. Charact. Eng. 8, 25 (2009).Google Scholar
Hernandez-Perez, A., Aviles, F., May-Pat, A., Valadez-Gonzalez, A., Herrera-Franco, P.J., and Bartolo-Perez, P.: Effective properties of MWCNT/epoxy composites using two different tubes. Compos. Sci. Technol. 68, 1422 (2008).Google Scholar
Balakrishnan, A. and Saha, M.C.: Tensile fracture and thermal conductivity characterization of toughened epoxy/CNT nanocomposites. Mater. Sci. Eng., A. 528, 906 (2011).CrossRefGoogle Scholar
Vincent, P.I.: The tough-brittle transition in thermoplastics. Polymer 1, 425 (1960).Google Scholar
Ma, P-C., Liu, M.Y., Zhang, H., Wang, S.Q., Wang, R., Wang, K., Wong, Y.K., Tang, B.Z., Hong, S.H., Paik, K.W., and Kim, J.K.: Enhanced electrical conductivity of nanocomposites containing hybrid fillers of carbon nanotubes and carbon black. Appl. Mater. Interfaces 1(5), 1090 (2009).Google Scholar
Lau, K.T. and Hui, D.: Effectiveness of using carbon nanotubes as nano-reinforcements for advanced composite structures. Carbon 40, 1605 (2002).Google Scholar
Whitney, H.J., Piskoti, C., and Zettle, A.: Thermal conductivity of single-walled carbon nanotubes. Phys. Rev. B 59(4), 2514 (1999).Google Scholar
Sandler, J., Shaffer, M.S.P., Prasse, T., Bauhofer, W., Schulte, K., and Windle, A.H.: Development of a dispersion process for carbon nanotubes in an epoxy matrix and the resulting electrical properties. Polymer 40, 5967 (1999).Google Scholar
Jen, Y.M. and Huang, C.Y.: Effect of temperature on fatigue strength of carbon nanotube/epoxy composites. J. Compos. Mater. 47, 1665 (2013).Google Scholar