Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T12:11:19.858Z Has data issue: false hasContentIssue false

Influence of substrate annealing on the epitaxial growth of BaTiO3 thin films by metal-organic chemical vapor deposition

Published online by Cambridge University Press:  31 January 2011

Cheol Seong Hwang
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Mark D. Vaudin
Affiliation:
National Institute of Standards and Technology, Gaithersburg, Maryland 20899
Gregory T. Stauf
Affiliation:
Advanced Technology Materials, 7 Commerce Drive, Danbury, Connecticut 06810
Get access

Abstract

BaTiO3 thin films were deposited by metal-organic chemical vapor deposition at 840 °C on two differently treated (100) MgO single crystal substrates. One MgO substrate was only mechanically polished and the other substrate was polished and then annealed at 1100 °C for 4 h in oxygen. Observation by transmission electron microscopy showed that the BaTiO3 thin film deposited on the unannealed substrate was fine-grained and that the whole film was epitaxial (100) in nature. In contrast, the film deposited on the annealed substrate consisted of large, (100)-oriented, epitaxial grains within which were distributed (110)-oriented grains with random in-plane orientations. These differences in BaTiO3 films deposited on differently treated substrates are discussed with reference to the surface structure of the MgO substrate and nucleation kinetics of BaTiO3 thin films on MgO.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Davis, G. M. and Gower, M. C., Appl. Phys. Lett. 55, 112 (1989).CrossRefGoogle Scholar
2.Iijima, K., Tomita, Y., Takayama, R., and Ueda, I., J. Appl. Phys. 60, 361 (1986).CrossRefGoogle Scholar
3.Schuneman, P. G., Pollak, T. M., Yang, Y., Teng, Y. Y., and Wong, C., J. Opt. Soc. Am. B 5 (8), 1702 (1988).CrossRefGoogle Scholar
4.Norton, M. G., English, G. R., and Carter, C. B., in Ferroelectric Thin Films, edited by Myers, E. R. and Kingon, A. I. (Mater. Res. Soc. Symp. Proc. 200, Pittsburgh, PA, 1990), pp. 237242.Google Scholar
5.Kaiser, D. L., Vaudin, M. D., Rotter, L. D., Wang, Z. L., Cline, J. P., Hwang, C. S., Marinenko, R. B., and Gillen, J. G., Appl. Phys. Lett. 66, (21), 2801 (1995).CrossRefGoogle Scholar
6.Chern, C. S., Zhao, J., Norris, P. E., Li, Y. Q., Gallois, B., Kear, B., Luo, L., Maggione, C. J., and Wilkens, B. J., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1991), pp. 573578.Google Scholar
7.Wills, L. A., Wessles, B. W., Schultz, D. L., and Marks, T. J., in Ferroelectric Thin Films II, edited by Kingon, A. I., Myers, E. R., and Tuttle, B. (Mater. Res. Soc. Symp. Proc. 243, Pittsburgh, PA, 1991), pp. 217222.Google Scholar
8.Van Buskirk, P. C., Gardiner, R., Kirlin, P. S., and Nutt, S., J. Mater. Res. 7, 542545 (1992).CrossRefGoogle Scholar
9.Van Buskirk, P. C., Stauf, G. T., Gardiner, R., Kirlin, P. S., Bihari, B., Kumar, J., and Gallatin, G., in Ferroelectric Thin Films III, edited by Myers, E. R., Tuttle, B. A., Desu, S. B., and Larsen, P. K. (Mater. Res. Soc. Symp. Proc. 310, Pittsburgh, PA, 1993), pp. 119124.Google Scholar
10.McClune, R. C. and Wynblatt, P., J. Am. Ceram. Soc. 66, 111 (1983).CrossRefGoogle Scholar
11.Wang, Z. L. and Cowley, J. M., Surf. Sci. 193, 501 (1988).Google Scholar
12.Wang, Z. L., Bentley, J., Kenik, E. A., Horton, L. L., and McKee, R. A., Surf. Sci. 273, 88 (1992).CrossRefGoogle Scholar
13.Crozier, P. A., Gajdardziska-Josifovska, M., and Cowley, J. M., Microscopy Research and Technique 20, 426 (1992).Google Scholar
14.McKee, R. A., Walker, F. J., Sprecht, E. D., Jellison, G. E., Jr., Boatner, L. A., and Harding, J. H., Phys. Rev. Lett. 72 (17), 2741 (1994).CrossRefGoogle Scholar
15.Auciello, O. and Kingon, A. I., in Proc. 8th Int. Symp. on Applications of Ferroelectrics, edited by Liu, M.et al. (IEEE, New York, 1992), p. 320.Google Scholar
16.Moriyoshi, Y. and Ikegami, T., in Advances in Ceramics, Vol. 10, edited by Kingery, W. D. (Am. Ceram. Soc., Westerville, OH, 1984), p. 258.Google Scholar