Article contents
Influence of structure and chemistry on piezoelectric properties of lead zirconate titanate in a microelectromechanical systems power generation application
Published online by Cambridge University Press: 31 January 2011
Abstract
Lead zirconate titanate (PZT) films between 1 and 3 μm thick were grown using solution deposition techniques to study the effects of crystal structure and orientation on the direct piezoelectric output of these films on platinized Si membranes. By varying the chemistry of the film from Zr-rich to Ti-rich, the {100}/(111) relative intensity increased for films grown on randomly oriented Pt films. The 40:60 PZT had a tetragonal crystal structure and produced greater electrical output at a given strain than the rhombohedral film (Zr:Ti concentrations less than 50:50), while having a similar e31 constant, between 4.8 and 6.3 C/m2. Orientation and voltage output at a given strain were not strongly influenced by thickness in the ranges investigated. Defects in internal PZT/PZT crystallization interfaces were identified and include porosity on the order of tens of nm, with a corresponding depletion in Pb and accumulation of O at these interfaces. The {100} texture of rhombohedral films deposited upon (111) textured Pt films is significantly greater than the {100} texture of tetragonal films, which show both a {100} and {111} orientation on the same Pt film.
- Type
- Articles
- Information
- Copyright
- Copyright © Materials Research Society 2003
References
REFERENCES
- 13
- Cited by