Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-24T17:08:29.120Z Has data issue: false hasContentIssue false

Influence of porosity on the transport properties of Bi2Te3-based alloys by field-assisted sintering

Published online by Cambridge University Press:  16 May 2013

Zhihui Zhang
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, California 95616
Joshua K. Yee*
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, California 95616
Peter A. Sharma
Affiliation:
Materials Physics, Sandia National Laboratories, Livermore, California 94551-0969
Nancy Yang
Affiliation:
Energy Nanomaterials Sciences, Sandia National Laboratories, Livermore, California 94551-0969
Enrique J. Lavernia
Affiliation:
Department of Chemical Engineering and Materials Science, University of California, Davis, Davis, California 95616
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Retention of a nanostructure in thermoelectric materials through rapid sintering (e.g., field-assisted sintering) is generally associated with leaving certain amounts of porosity due to short sintering times. In this study, the influence of porosity on the thermoelectric transport properties in Bi2Te3-based alloys was studied by changing the sintering pressure during spark plasma sintering. N-type Bi2Te3 and p-type (Bi0.2Sb0.8)2Te3 were sintered at 673 K using pressures from 50 to 300 MPa to obtain different levels of porosity. Electrical resistivity, thermal conductivity, Seebeck coefficient, carrier concentrations, and Hall mobility were measured and characterized. The results show that increasing sintering pressure is effective in reducing porosity, which lowers electrical resistivity and increases the carrier concentrations. The transport properties were fitted to general effective medium equations and demonstrate that in p-type (Bi0.2Sb0.8)2Te3 sintered at high pressures, decreases in electrical resistivity and lattice thermal conductivity exceeded the Seebeck coefficient reduction, improving the thermoelectric figure of merit.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dresselhaus, M.S., Chen, G., Tang, M.Y., Yang, R.G., Lee, H., Wang, D.Z., Ren, Z.F., Fleurial, J-P., and Gogna, P.: New directions for low-dimensional thermoelectric materials. Adv. Mater. 19, 10431053 (2007).CrossRefGoogle Scholar
Lan, Y., Minnich, A.J., Chen, G., and Ren, Z.: Enhancement of thermoelectric figure-of-merit by a bulk nanostructuring approach. Adv. Funct. Mater. 20, 357376 (2010).CrossRefGoogle Scholar
Poudel, B., Hao, Q., Ma, Y., Lan, Y.C., Minnich, A., Yu, B., Yan, X., Wang, D.Z., Muto, A., Chen, X.Y., Liu, J.M., Dresselhaus, M.S., Chen, G., and Ren, Z.F.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634638 (2008).CrossRefGoogle ScholarPubMed
Bomshtein, N., Spiridonov, G., Dashevsky, Z., and Gelbstien, Y.: Thermoelectric, structural, and mechanical properties of spark-plasma-sintered submicro- and microstructured p-type Bi0.5Sb1.5Te3. J. Electron. Mater. 41, 15461553 (2012).CrossRefGoogle Scholar
Zhao, L.D., Zhang, B.P., Li, J.F., Zhang, H.L., and Liu, W.S.: Enhanced thermoelectric and mechanical properties in textured n-type Bi2Te3 prepared by spark plasma sintering. Solid State Sci. 10, 651658 (2008).CrossRefGoogle Scholar
Zhang, Z., Sharma, P.A., Lavernia, E.J., and Yang, N.: Thermoelectric and transport properties of nanostructured Bi2Te3 by spark plasma sintering. J. Mater. Res. 26, 475484 (2011).CrossRefGoogle Scholar
Kim, D.H., Kim, C., Heo, S.H., and Kim, H.: Influence of powder morphology on thermoelectric anisotropy of spark-plasma-sintered Bi–Te-based thermoelectric materials. Acta Mater. 59, 405411 (2011).CrossRefGoogle Scholar
Munir, Z.A., Anselmi-Tamburini, U., and Ohyanagi, M.: The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method. J. Mater. Sci. 41, 763777 (2006).CrossRefGoogle Scholar
Anselmi-Tamburini, U., Holland, T.B., Spinolo, G., Maglia, F., Tredici, I., and Mukherjee, A.K.: Field Assisted Sintering Mechanisms, in Sintering, edited by R. Castro & K. van Benthem (Springer-Verlag, Berlin Heidelberg, 2013).Google Scholar
Omori, M.: Sintering, consolidation, reaction and crystal growth by the spark plasma system (SPS). Mater. Sci. Eng., A 287, 183188 (2000).CrossRefGoogle Scholar
Böttner, H., Ebling, D.G., Jacquot, A., König, J., Kirste, L., and Schmidt, J.: Structural and mechanical properties of spark plasma sintered n- and p-type bismuth telluride alloys. Phys. Status Solidi RRL 1, 235237 (2007).CrossRefGoogle Scholar
Fan, X.A., Yang, J.Y., Chen, R.G., Yun, H.S., Zhu, W., Bao, S.Q., and Duan, X.K.: Characterization and thermoelectric properties of p-type 25%Bi2Te3–75%Sb2Te3 prepared via mechanical alloying and plasma activated sintering. J. Phys. D: Appl. Phys. 39, 740745 (2006).CrossRefGoogle Scholar
He, Q., Hu, S., Tang, X., Lan, Y, Yang, J., Wang, X., Hao, Q., and Chen, G.. The great improvement effect of pores on ZT in Co1−xNixSb3 system. Appl. Phys. Lett. 93, 042108–042108-3 (2008).Google Scholar
Lutterotti, L., Bortolotti, M., Ischia, G., Lonardelli, I., and Wenk, H-R.: Rietveld texture analysis from diffraction images. Zeitschrift für Kristallographie Supplements 2007, 125130 (2007).CrossRefGoogle Scholar
Bardi, G., Cafaro, M., Gianfreda, V., and Piacente, V.: Vaporization behavior and the vapor-pressure of solid Bi2Te3 high temperature. Science 16, 377385 (1983).Google Scholar
Anselmi-Tamburini, U., Gennari, S., Garay, J.E., and Munir, Z.A.: Fundamental investigations on the spark plasma sintering/synthesis process II. Modeling of current and temperature distributions. Mater. Sci. Eng., A 394, 139148 (2005).CrossRefGoogle Scholar
Seeger, K.: Semiconductor Physics: An Introduction, 9th ed. (Springer, Berlin, New York, 2004).CrossRefGoogle Scholar
Martin, J., Wang, L., Chen, L., and Nolas, G.S.: Enhanced Seebeck coefficient through energy-barrier scattering in PbTe nanocomposites. Phys. Rev. B 79, 115311 (2009).CrossRefGoogle Scholar
Caillat, T., Carle, M., Pierrat, P., Scherrer, H., and Scherrer, S.: Thermoelectric properties of (BixSb1−x)2Te3 single crystal solid solutions grown by the T.H.M. method. J. Phys. Chem. Solids 53, 11211129 (1992).CrossRefGoogle Scholar
Kim, D-H. and Mitani, T.: Thermoelectric properties of fine-grained Bi2Te3 alloys. J. Alloys Compd. 399, 1419 (2005).CrossRefGoogle Scholar
Miller, G.R. and Li, C-Y.: Evidence for the existence of antistructure defects in bismuth telluride by density measurements. J. Phys. Chem. Solids 26, 173177 (1965).CrossRefGoogle Scholar
Navrátil, J., Starý, Z., and Plechácek, T.: Thermoelectric properties of p-type antimony bismuth telluride alloys prepared by cold pressing. Mater. Res. Bull. 31, 15591566 (1996).CrossRefGoogle Scholar
Starý, Z., Horák, J., Stordeur, M., and Stölzer, M.: Antisite defects in Sb2−xBixTe3 mixed crystals. J. Phys. Chem. Solids 49, 2934 (1988).CrossRefGoogle Scholar
Xu, G-Y., Niu, S-T., and Wu, X-F.: Thermoelectric properties of p-type Bi0.5Sb1.5Te2.7Se0.3 fabricated by high pressure sintering method. J. Appl. Phys. 112, 073708–073708-12 (2012).CrossRefGoogle Scholar
Zhao, Y., Dyck, J.S., Hernandez, B.M., and Burda, C.: Enhancing thermoelectric performance of ternary nanocrystals through adjusting carrier concentration. J. Am. Chem. Soc. 132, 49824983 (2010).CrossRefGoogle ScholarPubMed
Hyun, D-B., Hwang, J-S., Shim, J-D., and Oh, T.S.: Thermoelectric properties of (Bi0.25Sb0.75)2Te3 alloys fabricated by hot-pressing method. J. Mater. Sci. 36, 12851291 (2001).CrossRefGoogle Scholar
Yu, F., Xu, B., Zhang, J., Yu, D., He, J., Liu, Z., and Tian, Y.: Structural and thermoelectric characterizations of high pressure sintered nanocrystalline Bi2Te3 bulks. Mater. Res. Bull. 47, 14321437 (2012).CrossRefGoogle Scholar
Sumirat, I., Ando, Y., and Shimamura, S.: Theoretical consideration of the effect of porosity on thermal conductivity of porous materials. J. Porous Mater. 13, 439443 (2006).CrossRefGoogle Scholar
Bergman, D.J. and Levy, O.: Thermoelectric properties of a composite medium. J. Appl. Phys. 70, 68216833 (1991).CrossRefGoogle Scholar
McLachlan, D.S., Blaszkiewicz, M., and Newnham, R.E.: Electrical resistivity of composites. J. Am. Ceram. Soc. 73, 21872203 (1990).CrossRefGoogle Scholar
Lee, H., Vashaee, D., Wang, D.Z., Dresselhaus, M.S., Ren, Z.F., and Chen, G.: Effects of nanoscale porosity on thermoelectric properties of SiGe. J. Appl. Phys. 107, 094308–094308-7 (2010).CrossRefGoogle Scholar
Hashin, Z. and Shtrikman, S.: Conductivity of polycrystals. Phys. Rev. 130, 129133 (1963).CrossRefGoogle Scholar
Helsing, J.: Improved bounds on the conductivity of composites by interpolation. Proc. R. Soc. London, Ser. A 444, 363374 (1994).Google Scholar
Fleurial, J.P., Gailliard, L., Triboulet, R., Scherrer, H., and Scherrer, S.: Thermal properties of high quality single crystals of bismuth telluride—part I: Experimental characterization. J. Phys. Chem. Solids 49, 12371247 (1988).CrossRefGoogle Scholar
Gelbstein, Y.: Thermoelectric power and structural properties in two-phase Sn/SnTe alloys. J. Appl. Phys. 105, 023713–023713-5 (2009).CrossRefGoogle Scholar