Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T09:22:14.292Z Has data issue: false hasContentIssue false

Influence of nanostructure size on the luminescence behavior of silicon nanoparticle thin films

Published online by Cambridge University Press:  31 January 2011

A. A. Seraphin
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
E. Werwa
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
K. D. Kolenbrander*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
*
c)Author to whom correspondence should be addressed.
Get access

Abstract

We demonstrate the effect of particle size and quantum confinement on the luminescence properties of nanoscale silicon thin films. Thin films of agglomerated silicon nanoparticles are synthesized using pulsed laser ablation supersonic expansion. Following deposition, standard semiconductor processing techniques are employed to reduce the nanoparticle size. Films are oxidized both in air and chemically to reduce the silicon core dimensions, resulting in a shift of the luminescence emission peak to shorter wavelengths. Removal of the oxide using hydrofluoric acid (HF) results in further blueshifting of the luminescence, as does subsequent reoxidation in air and using nitric acid. The luminescence properties of samples are also studied as a function of excitation intensity. For room temperature excitation with a pulsed 355 nm source, a saturation of the photoluminescence intensity at high excitation intensity is observed, along with a blueshift of the peak PL wavelength. This behavior is found to persist at reduced temperature. A saturation of PL intensity, but no blueshift, is observed for high excitation intensity using a cw 488 nm source at room temperature. At reduced temperatures, no saturation of emission intensity occurs for high intensity 488 nm cw excitation. Both the irreversible shifting of the peak PL wavelength with size reducing treatments and the PL behavior at high excitation intensities indicate that quantum confinement determines the luminescence wavelength.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Narayanamurti, V., Phys. Today 37 (10), 24 (1984).CrossRefGoogle Scholar
2.Bawendi, M. G., Wilson, W. L., Rothberg, L., Carroll, P. J., Jedju, T. M., Steigerwald, M. L., and Brus, L. E., Phys. Rev. Lett. 65, 1623 (1990).CrossRefGoogle Scholar
3.Micic, O. I., Sprague, J., Lu, Z., and Nozik, A. J., Appl. Phys. Lett. 68, 3150 (1996).CrossRefGoogle Scholar
4.Furukawa, S. and Miyasato, T., Phys. Rev. B 38, 5726 (1988).CrossRefGoogle Scholar
5.Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
6.Takagi, H., Ogawa, H., Yamazaki, Y., Ishikazi, A., and Nakagiri, T., Appl. Phys. Lett. 56, 2379 (1990).CrossRefGoogle Scholar
7.Calcott, P. D. J., Nash, K. J., Canham, L. T., Kane, M. J., and Brumhead, D., J. Phys.: Cond. Matt. 5, L91 (1993).Google Scholar
8.Brus, L. E., Szajowski, P. F., Wilson, W. L., Harris, T. D., Schuppler, S., and Citrin, P. H., J. Am. Chem. Soc. 117, 2915 (1995).CrossRefGoogle Scholar
9.Lockwood, D. J., Lu, Z. H., and Baribeau, J. M., Phys. Rev. Lett. 76, 539 (1996).CrossRefGoogle Scholar
10.Koch, F., Petrova-Koch, V., and Muschik, T., J. Lumin. 57, 271 (1993).CrossRefGoogle Scholar
11.Kanemitsu, Y., Phys. Rev. B 49, 16845 (1994).CrossRefGoogle Scholar
12.Fauchet, P. M., Ettedgui, E., Raisanen, A., Brillson, L. J., Seiferth, F., Kurinec, S. K., Gao, Y., Peng, C., and Tsybeskov, L., in Silicon-Based Optoelectronic Materials, edited by Tischler, M. A., Collins, R. T., Thewalt, M. L. W., and Abstreiter, G. (Mater. Res. Soc. Symp. Proc. 298, Pittsburgh, PA, 1993), p. 271.Google Scholar
13.Jarrold, M. F. and Bower, J. E., J. Chem. Phys. 96, 9180 (1992).CrossRefGoogle Scholar
14.Werwa, E., Seraphin, A. A., Chiu, L. A., Zhou, C. C., and Kolenbrander, K. D., Appl. Phys. Lett. 64, 1821 (1994).CrossRefGoogle Scholar
15.Chiu, L. A., Seraphin, A. A., and Kolenbrander, K. D., J. Electron. Mater, 23, 347 (1994).CrossRefGoogle Scholar
16.Seraphin, A. A., Ngiam, S-T., and Kolenbrander, K. D., J. Appl. Phys. 80, 6429 (1996).CrossRefGoogle Scholar
17.Liu, H. I., Biegelsen, D. K., Ponce, F. A., Johnson, N. M., and Pease, R. F. W., Appl. Phys. Lett. 64, 1383 (1994).CrossRefGoogle Scholar
18.Delerue, C., Allan, G., and Lannoo, M., Phys. Rev. B 48, 11024 (1993).CrossRefGoogle Scholar
19.Schuppler, S., Friedman, S. L., Marcus, M. A., Adler, D. L., Xie, Y-H., Ross, F. M., Chabal, Y. J., Harris, T. D., Brus, L. E., Brown, W. L., Chaban, E. E., Szajowski, P. F., Christman, S. B., and Citrin, P. H., Phys. Rev. B 52, 4910 (1995).CrossRefGoogle Scholar
20.Khurgin, J. B., Forsythe, E. W., Kim, S. I., Sywe, B. S., Kahn, B. A., and Tompa, G. S., in Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R. W., Tsai, C. C., Hirose, M., Koch, F., and Brus, L. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, PA, 1995), p. 193.Google Scholar
21.Lukes, F., Surf. Sci. 30, 91 (1972).CrossRefGoogle Scholar
22.Okada, R. and Iijima, S., Appl. Phys. Lett. 58, 1662 (1991).CrossRefGoogle Scholar
23.Stathis, J. H. and Kastner, M. A., Phys. Rev. B 35, 2972 (1987).CrossRefGoogle Scholar
24.Tsybeskov, L., Vandyshev, J. V., and Fauchet, P. M., Phys. Rev. B 49, 7821 (1994).CrossRefGoogle Scholar
25.Mimura, H., Futagi, T., Matsumoto, T., Nakamura, T., and Kanemitsu, Y., Jpn. J. Appl. Phys. 33, 586 (1994).CrossRefGoogle Scholar
26.Sen, S., Kontkiewicz, A. J., Kontkiewicz, A. M., Nowak, G., Siejka, J., Sakthivel, P., Ahmed, K., Mukherjee, P., Witanachchi, S., Hoff, A. M., and Lagowski, J., in Microcrystalline and Nanocrystalline Semiconductors, edited by Collins, R. W., Tsai, C. C., Hirose, M., Koch, F., and Brus, L. (Mater. Res. Soc. Symp. Proc. 358, Pittsburgh, PA, 1995), p. 369.Google Scholar
27.Wolf, S. and Tauber, R. N., Silicon Processing for the VLSI ERA, Vol. 1 (Lattice Press, Sunset Beach, CA, 1986), p. 532.Google Scholar
28.Hu, S. M. and Kerr, D. R., J. Electrochem. Soc. 114, 414 (1967).CrossRefGoogle Scholar
29.Mihalcescu, I., Vial, J. C., Bsiesy, A., Muller, F., Romestain, R., Martin, E., Delerue, C., Lannoo, M., and Allan, G., Phys. Rev. B 51, 17605 (1995).CrossRefGoogle Scholar
30.Koos, M., Pocsik, I., and Vazsonyi, E. B., Appl. Phys. Lett. 62, 1797 (1993).CrossRefGoogle Scholar
31.Delerue, C., Lannoo, M., Allan, G., Martin, E., Mihalcescu, I., Vial, J. C., Romestain, R., Muller, F., and Bsiesy, A., Phys. Rev. Lett. 75, 2228 (1995).CrossRefGoogle Scholar
32.Schmitt-Rink, S., Miller, D. A. B., and Chemla, D. S., Phys. Rev. B 35, 8113 (1987).CrossRefGoogle Scholar
33.Brus, L. E., J. Chem. Phys. 80, 4403 (1984).CrossRefGoogle Scholar
34.Fafard, S., Leon, R., Leonard, D., Merz, J. L., and Petroff, P. M., Phys. Rev. B 52, 5752 (1995).Google Scholar
35.Fafard, S., Wasilweski, Z., McCaffrey, J., Raymond, S., and Charbonneau, S., Appl. Phys. Lett. 68, 991 (1996).CrossRefGoogle Scholar
36.Beattie, A. R. and Landsberg, P. T., Proc. Royal Soc. London 249, 16 (1959).Google Scholar