Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-28T01:48:33.201Z Has data issue: false hasContentIssue false

Influence of iron doping on the structural, chemical, and optoelectronic properties of sputtered zinc oxide thin films

Published online by Cambridge University Press:  26 September 2016

Mohammad F. Al-Kuhaili*
Affiliation:
Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
Sardar M.A. Durrani
Affiliation:
Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
Ayman S. El-Said
Affiliation:
Physics Department, King Fahd University of Petroleum and Minerals, Dhahran 31261, Saudi Arabia
R. Heller
Affiliation:
Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf, 01328 Dresden, Germany
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Iron (Fe)-doped zinc oxide (ZnO) thin films were deposited using two techniques: (i) radio-frequency (RF) sputtering of Fe-doped ZnO targets, and (ii) co-sputtering, where ZnO was RF-sputtered and iron was direct-current (DC)-sputtered. The as-deposited films were polycrystalline, with predominant growth along the (002) direction of hexagonal ZnO, and possessed a considerable concentration of oxygen vacancies. From an optoelectronic point of view, the films were highly transparent, with a band gap of 3.25 eV, and had electrical resistivity values in the range of 100–103 Ω cm. To improve the electrical conductivity of the films, they were annealed in a vacuum and in a hydrogen atmosphere. The annealing process did not affect the optical properties of the films. However, there were substantial structural and chemical changes in the films. Moreover, the electrical conductivity of the films was enhanced drastically upon annealing in hydrogen, where the electrical resistivity was reduced to 3.2 × 10−3 Ω cm.

Type
Articles
Copyright
Copyright © Materials Research Society 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Radzimska, A.K. and Jesionowski, T.: Zinc oxide–from synthesis to applications: A review. Materials 7, 2833 (2014).CrossRefGoogle Scholar
Pearton, S.J., Norton, D.P., Ip, K., Heo, Y.W., and Steiner, T.: Recent progress in processing and properties of ZnO. Prog. Mater. Sci. 50, 293 (2005).Google Scholar
Robertson, J. and Falabretti, B.: Electronic structure of transparent conducting oxides. In Handbook of Transparent Conductors, Ginley, D.S. ed.; Springer, New York, 2010.Google Scholar
Mende, L.S. and Driscoll, L.M.: ZnO–nanostructures, defects, and devices. Mater. Today 10, 40 (2007).CrossRefGoogle Scholar
Wang, Z.L.: Nanostructures of zinc oxide. Mater. Today 7, 26 (2004).Google Scholar
Liu, H., Avrutin, V., Izyumskaya, N., Ozgur, U., and Morkoc, H.: Transparent conducting oxides for electrode applications in light emitting and absorbing devices. Superlattices Microstruct. 48, 458 (2010).CrossRefGoogle Scholar
Minami, T.: Transparent conducting oxide semiconductors for transparent electrodes. Semicond. Sci. Technol. 20, S35 (2005).Google Scholar
Zeng, H., Duan, G., Li, Y., Yang, S., Xu, X., and Cai, W.: Blue luminescence of ZnO nanoparticles based on non-equilibrium processes: Defect origins and emission controls. Adv. Funct. Mater. 20, 561 (2010).CrossRefGoogle Scholar
Chen, Z.H., Tang, Y.B., Liu, C.P., Leung, Y.H., Yuan, G.D., Chen, L.M., Wang, Y.Q., Bello, I., Zapien, J.A., Zhang, W.J., Lee, C.S., and Lee, S.T.: Vertically aligned ZnO nanorod arrays sensitized with gold nanoparticles for Schottky barrier photovoltaic cells. J. Phys. Chem. C 113, 13433 (2009).CrossRefGoogle Scholar
Mclaren, A., Valdes-Solis, T., Li, G.Q., and Tsang, S.C.: Shape and size effects of ZnO nanocrystals on photocatalytic activity. J. Am. Chem. Soc. 131, 12540 (2009).CrossRefGoogle ScholarPubMed
Klingshirn, C.: ZnO: From basics towards applications. Phys. Status Solidi B 244, 3027 (2007).CrossRefGoogle Scholar
Kim, K., Park, K., and Ma, D.: Structural, electrical and optical properties of aluminum doped zinc oxide films prepared by radio frequency magnetron sputtering. J. Appl. Phys. 81, 7764 (1997).CrossRefGoogle Scholar
Fang, G., Li, D., and Yao, B.L.: Fabrication and characterization of transparent conductive ZnO: Al thin films prepared by direct current magnetron sputtering with highly conductive ZnO(ZnAl2O4) ceramic target. J. Cryst. Growth 247, 393 (2003).CrossRefGoogle Scholar
Nunes, P., Fortunato, E., and Martins, R.: Influence of the annealing conditions on the properties of ZnO thin films. Int. J. Inorg. Mater. 3, 1125 (2001).Google Scholar
Klingshirn, C.F., Meyer, B.K., Waag, A., Hoffmann, A., and Geurts, J.: Zinc oxide: From fundamental properties towards novel applications. In Springer Series in Materials Science, Vol. 120, Springer-Verlag: Berlin, 2010.Google Scholar
Kohiki, S., Nishitani, M., and Wada, T.: Enhanced electrical conductivity of zinc oxide thin films by ion implantation of gallium, aluminum, and boron atoms. J. Appl. Phys. 75, 2069 (1994).Google Scholar
Haynes, W.M. ed.: CRC Handbook of Chemistry and Physics, 96th ed. (CRC Press, Boca Raton, 2015).Google Scholar
Jin, Z., Fukumura, T., Kawasaki, M., Ando, K., Saito, H., Sekiguchi, T., Yoo, Y.Z., Murakami, M., Matsumoto, Y., Hasegawa, T., and Koinuma, H.: High throughput fabrication of transition-metal-doped epitaxial ZnO thin films: A series of oxide-diluted magnetic semiconductors and their properties. Appl. Phys. Lett. 78, 3824 (2001).CrossRefGoogle Scholar
Shinagawa, T., Izaki, M., Inui, H., Murase, K., and Awakura, Y.: Characterization of transparent ferromagnetic Fe:ZnO semiconductor films chemically prepared from aqueous solutions. J. Electrochem. Soc. 152, G736 (2005).CrossRefGoogle Scholar
Shinagawa, T., Izaki, M., Murase, K., Uruga, T., Nakamura, T., Matsumura, Y., and Awakura, Y.: Thermal phase transformation of ZnO-based transparent ferromagnetic composite films and the change in magnetic characteristics. J. Electrochem. Soc. 153, G168 (2006).CrossRefGoogle Scholar
Chikoidze, E., Boshta, M., Sayed, M.H., and Dumont, Y.: Large room temperature magnetoresistance of transparent Fe and Ni doped ZnO thin films. J. Appl. Phys. 113, 043713 (2013).CrossRefGoogle Scholar
Wang, L.M., Liao, J-W., Peng, Z-A., and Lai, J-H.: Doping effects on the characteristics of Fe:ZnO films: Valence transition and hopping transport. J. Electrochem. Soc. 156, H138 (2009).CrossRefGoogle Scholar
Kumar, R., Singh, A.P., Thakur, P., Chae, K.H., Choi, W.K., Angadi, B., Kaushik, S.D., and Patnaik, S.: Ferromagnetism and metal-semiconducting transition in Fe-doped ZnO thin films. J. Phys. D: Appl. Phys. 41, 155002 (2008).Google Scholar
Prajapati, C.S., Kushwaha, A., and Sahay, P.P.: Experimental investigation of spray-deposited Fe-doped ZnO nanoparticle thin films: Structural, microstructural, and optical properties. J. Therm. Spray Technol. 22, 1230 (2013).CrossRefGoogle Scholar
Paraguay, F., Morales, J., Estrada, W., Andrade, E., and Miki-Yoshida, M.: Influence of Al, In, Cu, Fe and Sn dopants in the microstructure of zinc oxide thin films obtained by spray pyrolysis. Thin Solid Films 366, 16 (2000).CrossRefGoogle Scholar
Soumahoro, I., Moubah, R., Schmerber, G., Colis, S., Ait Aouaj, M., Abd-lefdil, M., Hassanain, N., Berrada, A., and Dinia, A.: Structural, optical, and magnetic properties of Fe-doped ZnO films prepared by spray pyrolysis method. Thin Solid Films 518, 4593 (2010).CrossRefGoogle Scholar
Xue, Y.H., Zhang, X.D., Zhang, X.L., Shen, Y.Y., Zhu, F., Zhang, L.H., Wang, J., and Liu, C.L.: Room temperature magnetic properties of Fe and C implanted ZnO films. Appl. Surf. Sci. 257, 10329 (2011).CrossRefGoogle Scholar
Rambu, A.P., Nica, V., and Dobromir, M.: Influence of Fe-doping on the optical and electrical properties of ZnO films. Superlattices Microstruct. 59, 87 (2013).Google Scholar
Zhang, Y., Wu, L., Li, H., Xu, J., Han, L., Wang, B., Tuo, Z., and Xie, E.: Influence of Fe doping on the optical property of ZnO films. J. Alloys Compd. 473, 319 (2009).CrossRefGoogle Scholar
Xu, L. and Li, X.: Influence of Fe doping on the structural and optical properties of ZnO thin films prepared by sol–gel method. J. Cryst. Growth 312, 851 (2010).CrossRefGoogle Scholar
Lin, C.C., Young, S.L., Kung, C.Y., Jhang, M.C., Lin, C.H., Kao, M.C., Chen, H.Z., Ou, C.R., Cheng, C.C., and Lin, H.H.: Effect of Fe doping on the microstructure and electrical properties of transparent ZnO nanocrystalline films. Thin Solid Films 529, 479 (2013).CrossRefGoogle Scholar
Santosh, V.S., Babu, K.R., and Deepa, M.: Influence of Fe dopant concentration and annealing temperature on the structural and optical properties of ZnO thin films deposited by sol–gel method. J. Mater. Sci.: Mater. Electron. 25, 224 (2014).Google Scholar
Zhang, M., Cao, L.M., Xu, F.F., Bando, Y., and Wang, W.K.: Structural properties of magnetron sputtered ZnO films with incorporated iron. Thin Solid Films 406, 40 (2002).CrossRefGoogle Scholar
Kim, K.J. and Park, Y.R.: Optical investigation of Zn1-x Fe x O films grown on Al2O3(0001) by radio-frequency sputtering. J. Appl. Phys. 96, 4150 (2004).CrossRefGoogle Scholar
Wang, X.B., Song, C., Li, D.M., Geng, K.W., Zeng, F., and Pan, F.: The influence of different doping elements on microstructure, piezoelectric coefficient and resistivity of sputtered ZnO film. Appl. Surf. Sci. 253, 1639 (2006).CrossRefGoogle Scholar
Chen, A.J., Wu, X.M., Sha, Z.D., Zhuge, L.J., and Meng, Y.D.: Structure and photoluminescence properties of Fe-doped ZnO thin films. J. Phys. D: Appl. Phys. 39, 4762 (2006).CrossRefGoogle Scholar
Wei, X.X., Song, C., Geng, K.W., Zeng, F., He, B., and Pan, F.: Local Fe structure and ferromagnetism in Fe-doped ZnO films. J. Phys.: Condens. Matter 18, 7471 (2006).Google Scholar
Chen, Z.C., Zhuge, L.J., Wu, X.M., and Meng, Y.D.: Initial study on the structure and optical properties of Zn1−x Fe x O films. Thin Solid Films 515, 5462 (2007).CrossRefGoogle Scholar
Seo, S.Y., Kwak, C.H., Lee, Y.B., Kim, S.H., Park, S.H., and Han, S.W.: Hole-induced ferromagnetic properties of Fe-added ZnO films. J. Korean Phys. Soc. 53, 249 (2008).CrossRefGoogle Scholar
Cui, M.L., Wu, X.M., Zhuge, L.J., and Meng, Y.D.: Growth of fractal films doped with Fe. Vacuum 82, 613 (2008).Google Scholar
Wang, C., Chen, Z., He, Y., Li, L., and Zhang, D.: Structure, morphology and properties of Fe-doped ZnO films prepared by facing-target magnetron sputtering. Appl. Surf. Sci. 255, 6881 (2009).CrossRefGoogle Scholar
Zhao, R.B., Hou, D.L., Wei, Y.Y., Zhou, Z.Z., Pan, C.F., Zhen, C.M., and Tang, G.D.: Ferromagnetism in Fe-doped ZnO thin films. Mod. Phys. Lett. B 6, 815 (2009).CrossRefGoogle Scholar
Wang, X.C., Mi, W.B., and Kuang, D.F.: Microstructure, magnetic and optical properties of sputtered polycrystalline ZnO films with Fe addition. Appl. Surf. Sci. 256, 1930 (2010).CrossRefGoogle Scholar
Jin, C.G., Gao, Y., Wu, X.M., Cui, M.L., Zhuge, L.J., Chen, Z.C., and Hong, B.: Structural and magnetic properties of transition metal doped ZnO films. Thin Solid Films 518, 2152 (2010).Google Scholar
Gorzkowska-Sobas, A., Galeckas, A., Sunding, M.F., Diplas, S., and Kuznetsov, A.Y.: An investigation of Fe-doped ZnO thin films grown by magnetron sputtering. Phys. Scr. T141, 014004 (2010).CrossRefGoogle Scholar
Luo, J.T., Yang, Y.C., Zhu, X.Y., Chen, G., Zeng, F., and Pan, F.: Enhanced electrochemical response of Fe-doped ZnO films by modulating the chemical state and ionic size of the Fe dopant. Phys. Rev. B 82, 014116 (2010).CrossRefGoogle Scholar
Hong, R., Wen, H., Liu, C., Chen, J., and Liao, J.: Dopant concentration dependence of structure, optical, and magnetic properties of ZnO: Fe thin films. J. Cryst. Growth 314, 30 (2011).CrossRefGoogle Scholar
Chen, G., Peng, J.J., Song, C., Zeng, F., and Pan, F.: Interplay between chemical state, electric properties, and ferromagnetism in Fe-doped ZnO films. J. Appl. Phys. 113, 104503 (2013).CrossRefGoogle Scholar
Gao, F., Liu, X.Y., Zheng, L.Y., Li, M.X., Bai, Y.M., and Xie, J.: Microstructure and optical properties of Fe-doped ZnO thin films prepared by DC magnetron sputtering. J. Cryst. Growth 371, 126 (2013).CrossRefGoogle Scholar
Zhang, X., Ma, S., Li, F., Yang, F., Liu, J., and Zhao, Q.: Effects of substrate temperature on the growth orientation and optical properties of ZnO:Fe films synthesized via magnetron sputtering. J. Alloys Compd. 574, 149 (2013).Google Scholar
Hassan, M.M., Khan, W., Naqvi, A.H., Mishra, P., and Islam, S.S.: Fe dopants enhancing ethanol sensitivity of ZnO thin film deposited by RF magnetron sputtering. J. Mater. Sci. 49, 6248 (2014).CrossRefGoogle Scholar
Singh, S., Srinivasa, R., and Major, S.: Effect of substrate temperature on the structure and optical properties of ZnO thin films deposited by reactive RF magnetron sputtering. Thin Solid Films 515, 8718 (2007).Google Scholar
Zhu, B., Sun, X., Zhao, X., Su, F., Li, G., Wu, X., Wu, J., Wu, R., and Liu, J.: The effects of substrate temperature on the structure and properties of ZnO films prepared by pulsed laser deposition. Vacuum 82, 495 (2008).CrossRefGoogle Scholar
Jing, L., Xu, Z., Shang, J., Sun, X., Cai, W., and Guo, H.: The preparation and characterization of ZnO ultrafine particles. Mater. Sci. Eng., A 332, 356 (2002).CrossRefGoogle Scholar
Choi, B.G., Kim, I.H., Kim, D.H., Lee, K.S., Lee, T.S., Cheong, B., Baik, Y.J., and Kim, W.M.: Electrical, optical and structural properties of transparent and conducting ZnO thin films doped with Al and F by RF magnetron sputter. J. Eur. Ceram. Soc. 25, 2161 (2005).CrossRefGoogle Scholar
Chen, M., Wang, X., Yu, Y.H., Pei, Z.L., Bai, X.D., Sun, C., Huang, R.F., and Wen, L.S.: X-ray photoelectron spectroscopy and Auger electron spectroscopy studies of Al-doped ZnO films. Appl. Surf. Sci. 158, 134 (2000).CrossRefGoogle Scholar
Hu, J. and Gordon, R.G.: Textured aluminum doped zinc oxide thin films from atmospheric pressure chemical vapor deposition. J. Appl. Phys. 71, 880 (1992).CrossRefGoogle Scholar
Chaabouni, F., Abaab, M., and Rezig, B.: Effect of substrate temperature on the properties of ZnO films grown by RF magnetron sputtering. Mater. Sci. Eng., B 109, 236 (2004).CrossRefGoogle Scholar
Zhu, M., Huang, H., Gong, J., Sun, C., and Jinag, X.: Role of oxygen desorption during vacuum annealing in the improvement of electrical properties of aluminum doped zinc oxide films synthesized by sol gel method. J. Appl. Phys. 102, 043106 (2007).CrossRefGoogle Scholar
Chang, J.F., Lin, W.C., and Hon, M.H.: Effects of post-annealing on the structure and properties of Al-doped zinc oxide films. Appl. Surf. Sci. 183, 18 (2001).CrossRefGoogle Scholar
Lee, J.H., Yeo, B.W., and Park, B.O.: Effects of the annealing treatment on electrical and optical properties of ZnO transparent conduction films by ultrasonic spraying pyrolysis. Thin Solid Films 457, 333 (2004).CrossRefGoogle Scholar
Gupta, V. and Mansingh, A.: Influence of postdeposition annealing on the structural and optical properties of sputtered zinc oxide films. J. Appl. Phys. 80, 1063 (1996).CrossRefGoogle Scholar
Hao, X., Ma, J., Zhang, D., Yang, T., Ma, H., Yang, Y., Cheng, C., and Huang, J.: Thickness dependence of structural, optical and electrical properties of ZnO:Al films prepared on flexible substrates. Appl. Surf. Sci. 183, 137 (2001).Google Scholar
Liu, W., Yao, B., Li, Y., Li, B., Zheng, C., Zhang, B., Shan, C., Zhang, Z., Zhang, J., and Shen, D.: Annealing temperature dependent electrical and optical properties of ZnO and MgZnO films in hydrogen ambient. Appl. Surf. Sci. 255, 6745 (2009).CrossRefGoogle Scholar
Hofmann, D.M., Hofstaetter, A., Leiter, F., Zhou, H.J., Henecker, F., Meyer, B.K., Orlinskii, S.B., Schmidt, J., and Baranov, P.G.: Hydrogen: A relevant shallow donor in zinc oxide. Phys. Rev. Lett. 88, 045504 (2002).CrossRefGoogle ScholarPubMed
Al-Kuhaili, M.F., Alade, I., and Durrani, S.M.A.: Optical constants of hydrogenated zinc oxide thin films. Opt. Mater. Express 4, 2323 (2014).CrossRefGoogle Scholar