Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T10:49:16.789Z Has data issue: false hasContentIssue false

Influence of antimony trioxide nanoparticle doping on superconductivity in MgB2 bulk

Published online by Cambridge University Press:  06 September 2011

Yun Zhang*
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, Fairy Meadow, New South Wales 2519, Australia
Shi Xue Dou
Affiliation:
Institute for Superconducting and Electronic Materials, University of Wollongong, Fairy Meadow, New South Wales 2519, Australia
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

In this work, antimony trioxide (Sb2O3) has been doped into MgB2 samples to act as an additive. The doping level varies from 2.5 to 15 wt%. The effects of Sb2O3 addition on the lattice parameters, critical temperature (Tc), critical current density (Jc), and upper critical field (Hc2) have been investigated in detail. It has been found that Sb2O3 doping results in a small depression in Tc. The Jc value is 2.4 × 103 A·cm−2 for the 2.5% Sb2O3-doped sample at 5 K and 8 T, which is more than two times higher than for the undoped sample. The significant Jc improvement at high fields is attributed to the Hc2 enhancement caused by the increased disorder.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J.: Superconductivity at 39 K in magnesium diboride. Nature 410, 63 (2001).CrossRefGoogle ScholarPubMed
2.Bugoslavsky, Y., Cohen, L.F., Perkins, G.K., Polichetti, M., Tate, T.J., Gwilliam, R., and Caplin, A.D.: Enhancement of the high-magnetic-field critical current density of superconducting MgB2 by proton irradiation. Nature 411, 561 (2001).CrossRefGoogle ScholarPubMed
3.Dou, S.X., Soltanian, S., Horvat, J., Wang, X.L., Zhou, S.H., Ionescu, M., Liu, H.K., Munroe, P., and Tomsic, M.: Enhancement of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping. Appl. Phys. Lett. 81, 3419 (2002).CrossRefGoogle Scholar
4.Rowell, J.M.: The widely variable resistivity of MgB2 samples. Supercond. Sci. Technol. 16, R17 (2003).CrossRefGoogle Scholar
5.Larbalestier, D.C., Cooley, L.D., Rikel, M.O., Polyanskii, A.A., Jiang, J., Patnaik, S., Cai, X.Y., Feldmann, D.M., Gurevich, A., Squitieri, A.A., Nans, M.T., Eom, C.B., Hellstrom, E.E., Cava, R.J., Regan, K.A., Rogado, N., Hayward, M.A., He, T., Slusky, J.S., Khalifah, P., Inumaru, K., and Haas, M.: Strongly linked current flow in polycrystalline forms of the superconductor MgB2. Nature 410, 186 (2001).CrossRefGoogle ScholarPubMed
6.Souma, S., Machida, Y., Sato, T., Takahashi, T., Matsui, H., Wang, S-C., Ding, H., Kaminski, A., Campuzano, J.C., Sasaki, S., and Kadowaki, K.: The origin of multiple superconducting gaps in MgB2. Nature 423, 65 (2003).CrossRefGoogle ScholarPubMed
7.Kambara, M., Babu, N.H., Sadki, E.S., Cooper, J.R., Minami, H., Cardwell, D.A., Campbell, A.M., and Inoue, I.H.: High intergranular critical currents in metallic MgB2 superconductor. Supercond. Sci. Technol. 14, L5 (2001).CrossRefGoogle Scholar
8.Kotegawa, H., Ishida, K., Kitaoka, Y., Muranaka, T., and Akimitsu, J.: Evidence for strong-coupling s-wave superconductivity in MgB2: 11B NMR study. Phys. Rev. Lett. 87, 127001 (2001).CrossRefGoogle ScholarPubMed
9.Takasaki, T., Ekino, T., Muranaka, T., Fujii, H., and Akimitsu, J.: Multiple-gap structure of the binary superconductor MgB2. Physica C 388389, 147 (2003).CrossRefGoogle Scholar
10.Dou, S.X., Soltanian, S., Yeoh, W.K., and Zhang, Y.: Effect of nano-particle doping on the upper critical field and flux pinning in MgB2. IEEE Trans. Appl. Supercond. 15, 3219 (2005).CrossRefGoogle Scholar
11.Kumakura, H., Kitaguchi, H., Matsumoto, A., and Hatakeyama, H.: Upper critical fields of powder-in-tube-processed MgB2/Fe tape conductors. Appl. Phys. Lett. 84, 3669 (2004).CrossRefGoogle Scholar
12.Sumption, M.D., Bhatia, M., Dou, S.X., Rindfleisch, M., Tomsic, M., Arda, L., Ozdemir, M., Hascicek, Y., and Collings, E.W.: Irreversibility field and flux pinning in MgB2 with and without SiC additions. Supercond. Sci. Technol. 17, 1180 (2004).CrossRefGoogle Scholar
13.Yamamoto, A., Shimoyama, J., Ueda, S., Katsura, Y., Horii, S., and Kishio, K.: Doping effects on critical current properties of MgB2 bulks synthesized by modified powder-in-tube method. IEEE Trans. Appl. Supercond. 15, 3292 (2005).CrossRefGoogle Scholar
14.Wang, J., Bugoslavsky, Y., Berenov, A., Cowey, L., Caplin, A.D., Cohen, L.F., Cooley, L.D., Song, X., and Larbalestier, D.C.: High critical current density and improved irreversibility field in bulk MgB2 made by a scalable, nanoparticle addition route. Appl. Phys. Lett. 81, 2026 (2002).CrossRefGoogle Scholar
15.Matsumoto, A., Kumakura, H., Kitaguchi, H., and Hatakeyama, H.: Effect of SiO2 and SiC doping on the powder-in-tube processed MgB2 tapes. Supercond. Sci. Technol. 16, 926 (2003).CrossRefGoogle Scholar
16.Xu, G.J., Grivel, J.C., Abrahamsen, A.B., and Andersen, N.H.: Enhancement of the irreversibility field in bulk MgB2 by TiO2 nanoparticle addition. Physica C 406, 95 (2004).CrossRefGoogle Scholar
17.Gharaibeh, M., Albiss, B.A., Jumah, I., and Obaidat, I.M.: Effective incorporation of nanoceria into polycrystalline MgB2. J. Appl. Phys. 107, 063908 (2010).CrossRefGoogle Scholar
18.Yao, C., Zhang, X., Wang, D., Cao, Z., Wang, L., Qi, Y., Wang, C., Ma, Y., Awaji, S., and Watanabe, K.: Doping effects of Nd2O3 on the superconducting properties of powder-in-tube MgB2 tapes. Supercond. Sci. Technol. 24, 055016 (2011).CrossRefGoogle Scholar
19.Jiang, J., Senkowicz, B.J., Larbalestier, D.C., and Hellstrom, E.E.: Influence of boron powder purification on the connectivity of bulk MgB2. Supercond. Sci. Technol. 19, L33 (2006).CrossRefGoogle Scholar
20.Liao, X.Z., Serquis, A.C., Zhu, Y.T., Huang, J.Y., Peterson, D.E., Mueller, F.M., Xu, H.F.: Controlling flux pinning precipitates during MgB2 synthesis. Appl. Phys. Lett. 80(23), 4398 (2002).CrossRefGoogle Scholar
21.Klie, R.F., Idrobo, J.C., Browning, N.D., Serquis, A., Zhu, Y.T., Liao, X.Z., and Muelle, F.M.: Observation of coherent oxide precipitates in polycrystalline MgB2. Appl. Phys. Lett. 80(21), 3970 (2002).CrossRefGoogle Scholar
22.Eom, C.B., Lee, M.K., Choi, J.H., Belenky, L.J., Song, X., Cooley, L.D., Naus, M.T., Patnaik, S., Jiang, J., Rikel, M., Polyanskii, A., Gurevich, A., Cai, X.Y., Bu, S.D., Babcock, S.E., Hellstrom, E.E., Larbalestier, D.C., Rogado, N., Regan, K.A., Hayward, M.A., He, T., Slusky, J.S., Inumaru, K., Haas, M.K., Cava, R.J.: High critical current density and enhanced irreversibility field in superconducting MgB2 thin films. Nature 411, 558 (2001).CrossRefGoogle ScholarPubMed
23.Jiang, C.H., Hatakeyama, H., and Kumakura, H.: Effect of nanometer MgO addition on the in situ PIT processed MgB2/Fe tapes. Physica C 423, 45 (2005).CrossRefGoogle Scholar
24.Eisterer, M.: Magnetic properties and critical currents of MgB2. Supercond. Sci. Technol. 20, R47 (2007).CrossRefGoogle Scholar
25.Dew-Hughes, D.: Flux pinning mechanisms in type II superconductors. Philos. Mag. 30, 293 (1974).CrossRefGoogle Scholar