Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-01T18:28:52.709Z Has data issue: false hasContentIssue false

The influence of ∑3 twin boundaries on the formation of radiation-induced defect clusters in nanotwinned Cu

Published online by Cambridge University Press:  16 June 2011

Michael J. Demkowicz*
Affiliation:
Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139
Osman Anderoglu
Affiliation:
MPA-CINT: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545; and Department of Mechanical Engineering, Materials Science and Engineering Program, Texas A&M University, College Station, Texas 77843
Xinghang Zhang
Affiliation:
Department of Mechanical Engineering, Materials Science and Engineering Program, Texas A&M University, College Station, Texas 77843
Amit Misra
Affiliation:
MPA-CINT: Center for Integrated Nanotechnologies, Los Alamos National Laboratory, Los Alamos, New Mexico 87545
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We investigate the collective effect of a high volume fraction of ∑3 twin boundaries on the response of nanotwinned Cu to high dose He implantation near room temperature and find that they do not curtail the formation of vacancy and interstitial clusters. This result is rationalized through atomistic modeling, which shows that point defects at these boundaries have nearly identical properties to those in pure fcc Cu.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Voskoboinikov, R.E., Osetsky, Y.N., and Bacon, D.J.: Computer simulation of primary damage creation in displacement cascades in copper. I. Defect creation and cluster statistics. J. Nucl. Mater. 377, 385 (2008).CrossRefGoogle Scholar
2.Kiritani, M. and Takata, H.: Dynamic studies of defect mobility using high-voltage electron-microscopy. J. Nucl. Mater. 69/70, 277 (1978).CrossRefGoogle Scholar
3.Ullmaier, H.: The influence of helium on the bulk properties of fusion-reactor structural-materials. Nucl. Fusion 24, 1039 (1984).Google Scholar
4.Farrell, K.: Experimental effects of helium on cavity formation during irradiation–a review. Radiat. Eff. Defects Solids 53, 175 (1980).Google Scholar
5.Zinkle, S.J., Wolfer, W.G., Kulcinski, G.L., and Seitzman, L.E.: Stability of vacancy clusters in metals II. Effect of oxygen and helium on void formation in metals Phil. Mag. A 55, 127 (1987).Google Scholar
6.Foreman, A.J.E. and Singh, B.N.: The role of collision cascades and helium-atoms in cavity nucleation. Radiat. Eff. Defects Solids 113, 175 (1990).CrossRefGoogle Scholar
7.Stoller, R.E. and Odette, G.R.: The effects of helium implantation on microstructural evolution in an austenitic alloy. J. Nucl. Mater. 154, 286 (1988).Google Scholar
8.Odette, G.R.: On mechanisms controlling swelling in ferritic and martensitic alloys. J. Nucl. Mater. 155/157, 921 (1988).Google Scholar
9.Odette, G.R. and Lucas, G.E.: Embrittlement of nuclear reactor pressure vessels. JOM 53, 18 (2001).Google Scholar
10.Roberto, J. and Diaz de la Rubia, T.: Basic Research Needs for Advanced Nuclear Energy Systems, http://www.er.doe.gov/bes/reports/list.html (2006).Google Scholar
11.Odette, G.R. and Stoller, R.E.: A theoretical assessment of the effect of microchemical, microstructural and environmental mechanisms on swelling incubation in austenitic stainless steels. J. Nucl. Mater. 122, 514 (1984).Google Scholar
12.Mansur, L.K. and Yoo, M.H.: Effects of impurity trapping on irradiation-induced swelling and creep. J. Nucl. Mater. 74, 228 (1978).Google Scholar
13.Singh, B.N.: Effect of grain size on void formation during high-energy electron irradiation of austenitic stainless steel. Philos. Mag. 29, 25 (1974).Google Scholar
14.Rose, M., Balogh, A.G., and Hahn, H.: Instability of irradiation induced defects in nanostructured materials. Nucl. Inst. Meth. B 127/128, 119 (1997).CrossRefGoogle Scholar
15.Chimi, Y., Iwase, A., Ishikawa, N., Kobiyama, A., Inami, T., and Okuda, S.: Accumulation and recovery of defects in ion-irradiated nanocrystalline gold. J. Nucl. Mater. 297, 355 (2001).CrossRefGoogle Scholar
16.Nita, N., Schaeublin, R., Victoria, M., and Valiev, R.Z.: Effects of irradiation on the microstructure and mechanical properties of nanostructured materials. Philos. Mag. 85, 723 (2005).Google Scholar
17.Samaras, M., Derlet, P.M., Van Swygenhoven, H., and Victoria, M.: Computer simulation of displacement cascades in nanocrystalline Ni. Phys. Rev. Lett. 88, 125505 (2002).Google Scholar
18.Samaras, M., Derlet, P.M., Van Swygenhoven, H., and Victoria, M.: SIA activity during irradiation of nanocrystalline Ni. J. Nucl. Mater. 323, 213 (2003).Google Scholar
19.Samaras, M., Derlet, P.M., Van Swygenhoven, H., and Victoria, M.: Atomic scale modelling of the primary damage state of irradiated fcc and bcc nanocrystalline metals. J. Nucl. Mater. 351, 47 (2006).Google Scholar
20.Bai, X.M., Voter, A.F., Hoagland, R.G., Nastasi, M., and Uberuaga, B.P.: Efficient annealing of radiation damage near grain boundaries via interstitial emission. Science 327, 1631 (2010).CrossRefGoogle ScholarPubMed
21.Hochbauer, T., Misra, A., Hattar, K., and Hoagland, R.G.: Influence of interfaces on the storage of ion-implanted He in multilayered metallic composites. J. Appl. Phys. 98, 123516 (2005).CrossRefGoogle Scholar
22.Zhang, X., Li, N., Anderoglu, O., Wang, H., Swadener, J.G., Hochbauer, T., Misra, A., and Hoagland, R.G.: Nanostructured Cu/Nb multilayers subjected to helium ion-irradiation. Nucl. Inst. Meth. B 261, 1129 (2007).Google Scholar
23.Misra, A., Demkowicz, M.J., Zhang, X., and Hoagland, R.G.: The radiation damage tolerance of ultra-high strength nanolayered composites. JOM 59, 62 (2007).Google Scholar
24.Demkowicz, M.J. and Hoagland, R.G.: Structure of Kurdjumov-Sachs interfaces in simulations of a copper-niobium bilayer. J. Nucl. Mater. 372, 45 (2008).Google Scholar
25.Demkowicz, M.J., Hoagland, R.G., and Hirth, J.P.: Interface structure and radiation damage resistance in Cu-Nb multilayer nanocomposites. Phys. Rev. Lett. 100, 136102 (2008).CrossRefGoogle ScholarPubMed
26.Demkowicz, M.J., Wang, J., and Hoagland, R.G.: Interfaces between dissimilar crystalline solids, in Dislocations in Solids, Vol. 14, edited by Hirth, J.P. (Elsevier, Amsterdam, 2008), p. 141.Google Scholar
27.Misra, A. and Hoagland, R.G.: Plastic flow stability of metallic nanolaminate composites. J. Mater. Sci. 42, 1765 (2007).CrossRefGoogle Scholar
28.Mara, N.A., Bhattacharyya, D., Dickerson, P., Hoagland, R.G., and Misra, A.: Deformability of ultrahigh strength 5 nm Cu/Nb nanolayered composites. Appl. Phys. Lett. 92, 3 (2008).Google Scholar
29.Misra, A. and Hoagland, R.G.: Effects of elevated temperature annealing on the structure and hardness of copper/niobium nanolayered films. J. Mater. Res. 20, 2046 (2005).Google Scholar
30.Misra, A., Hoagland, R.G., and Kung, H.: Thermal stability of self-supported nanolayered Cu/Nb films. Philos. Mag. 84, 1021 (2004).Google Scholar
31.Argon, A.S. and Yip, S.: The strongest size. Philos. Mag. Lett. 86, 713 (2006).CrossRefGoogle Scholar
32.Ashby, M.F.: On interface-reaction control of Nabarro-Herring creep and sintering. Scr. Metall. 3, 837 (1969).CrossRefGoogle Scholar
33.Siegel, R.W., Chang, S.M., and Balluffi, R.W.: Vacancy loss at grain boundaries in quenched polycrystalline gold. Acta Metall. 28, 249 (1980).Google Scholar
34.King, A.H. and Smith, D.A.: On the mechanisms of point-defect absorption by grain and twin boundaries. Philos. Mag. A 42, 495 (1980).Google Scholar
35.Dollar, M. and Gleiter, H.: Point defect annihilation at grain boundaries in gold. Scr. Metall. 19, 481 (1985).Google Scholar
36.Lane, P.L. and Goodhew, P.J.: Helium bubble nucleation at grain-boundaries. Philos. Mag. A 48, 965 (1983).Google Scholar
37.Singh, B.N., Leffers, T., Green, W.V., and Victoria, M.: Nucleation of helium bubbles on dislocations, dislocation networks and dislocations in grain-boundaries during 600 MEV proton irradiation of aluminum. J. Nucl. Mater. 125, 287 (1984).Google Scholar
38.Thorsen, P.A., Bilde-Sorensen, J.B., and Singh, B.N.: Bubble formation at grain boundaries in helium implanted copper. Scr. Mater. 51, 557 (2004).CrossRefGoogle Scholar
39.Thorsen, P.A., Bilde-Sorensen, J.B., and Singh, B.N.: Influence of grain boundary structure on bubble formation behaviour in helium implanted copper. Mater. Sci. Forum 207/209, 445 (1996).Google Scholar
40.Sorensen, M.R., Mishin, Y., and Voter, A.F.: Diffusion mechanisms in Cu grain boundaries. Phys. Rev. B 62, 3658 (2000).Google Scholar
41.Suzuki, A. and Mishin, Y.: Interaction of point defects with grain boundaries in fcc metals. Interface Sci. 11, 425 (2003).Google Scholar
42.Suzuki, A. and Mishin, Y.: Atomistic modeling of point defects and diffusion in copper grain boundaries. Interface Sci. 11, 131 (2003).CrossRefGoogle Scholar
43.Seki, A., Seidman, D.N., Oh, Y., and Foiles, S.M.: Monte Caro simulations of segregation at [001] twist boundaries in a Pt(Au) alloy—I. results. Acta Metall. Mater. 39, 3167 (1991).Google Scholar
44.Seki, A., Seidman, D.N., Oh, Y., and Foiles, S.M.: Monte Carlo simulations of segregation at (001) twist boundaries in a Pt(Au) alloy—II. Discussion Acta Metall. Mater. 39, 3179 (1991).Google Scholar
45.Kwok, T., Ho, P.S., and Yip, S.: Molecular-dynamics studies of grain-boundary diffusion. I. Structural properties and mobility of point defects. Phys. Rev. B 29, 5354 (1984).Google Scholar
46.Kwok, T., Ho, P.S., and Yip, S.: Molecular-dynamics studies of grain-boundary diffusion. II. Vacancy migration, diffusion mechanism, and kinetics. Phys. Rev. B 29, 5363 (1984).Google Scholar
47.Daw, M.S. and Baskes, M.I.: Embedded-atom method - derivation and application to impurities, surfaces, and other defects in metals. Phys. Rev. B 29, 6443 (1984).Google Scholar
48.Voter, A.F.: Embedded Atom Method Potentials for Seven FCC Metals: Ni, Pd, Pt, Cu, Ag, Au, and Al. LANL Unclassified Technical Report No. LA-UR93–3901 (1993).Google Scholar
49.Voter, A.F.: The embedded atom method, in Intermetallic Compounds: Principles and Practice, Vol. 1, edited by Westbrook, J.H. and Fleischer, R.L. (Wiley, New York, 1994) p. 77.Google Scholar
50.Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., and Kress, J.D.: Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001).Google Scholar
51.Demkowicz, M.J. and Hoagland, R.G.: Simulations of collision cascades in Cu-Nb layered composites using an EAM interatomic potential. Int. J. Appl. Mech. 1, 421 (2009).Google Scholar
52.Kashinath, A. and Demkowicz, M.J.: A predictive interatomic potential for He in Cu and Nb. Model. Simul. Mater. Sci. Eng. 19, 035007 (2011).CrossRefGoogle Scholar
53.Murr, L.E.: Temperature coefficient of twin-boundary energy—determination of stacking-fault energy from coherent twin-boundary energy in pure fcc metals. Scr. Metall. 6, 203 (1972).Google Scholar
54.Ehrhart, P.: in Atomic Defects in Metals, edited by Ullmaier, H., Landolt-Börnstein New Series III, Vol. 25 (Springer, Berlin, 1991) p. 88.Google Scholar
55.Domain, C. and Legris, A.: Ab initio atomic-scale determination of point-defect structure in hcp zirconium. Philos. Mag. 85, 569 (2005).Google Scholar
56.Ehrhart, P.: The configuration of atomic defects as determined from scattering studies. J. Nucl. Mater. 69/70, 200 (1978).Google Scholar
57.Schaefer, H.E. and Dander, W.: The magnetic after-effect spectrum in cobalt between 20 and 350 K after electron irradiation at 4.2 K. Phys. Status Solidi B 78, 139 (1976).Google Scholar
58.Perez-Perez, F.J. and Smith, R.: Structural changes at grain boundaries in bcc iron induced by atomic collisions. Nucl. Inst. Meth. B 164, 487 (2000).Google Scholar
59.Dettmann, K., Leibfried, G., and Schroeder, K.: Spontaneous recombination of frenkel pairs for electron irradiation. Phys. Status Solidi 22, 423 (1967).CrossRefGoogle Scholar
60.Lennartz, R., Dworschak, F., and Wollenberger, H.: Frenkel pair recombination radius in copper as a function of temperature. J. Phys. F 7, 2011 (1977).Google Scholar
61.Dworschak, F., Lennartz, R., and Wollenberger, H.: Interstitial trapping and detrapping in electron-irradiated dilute copper-alloys J. Phys. F 5, 400 (1975).Google Scholar
62.Wolfer, W.G. and Si-Ahmed, A.: On the coefficient for bulk recombination of vacancies and interstitials. J. Nucl. Mater. 99, 117 (1981).Google Scholar
63.Kidson, G.V.: Vacancy-interstitial recombination coefficients in radiation-induced growth models. J. Nucl. Mater. 118, 115 (1983).CrossRefGoogle Scholar
64.Grant, B., Harder, J.M., and Bacon, D.J.: Interstitial-vacancy recombination for model BCC transition metals. J. Nucl. Mater. 171, 412 (1990).CrossRefGoogle Scholar
65.Ziegler, J.F., Biersack, J.P., and Littmark, U.: The Stopping and Range of Ions in Solids (Pergamon, New York, 1985).Google Scholar
66.Uberuaga, B.P., Hoagland, R.G., Voter, A.F., and Valone, S.M.: Direct transformation of vacancy voids to stacking fault tetrahedra. Phys. Rev. Lett. 99, 135501 (2007).CrossRefGoogle ScholarPubMed
67.Anderoglu, O., Misra, A., Wang, H., Ronning, F., Hundley, M.F., and Zhang, X.: Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl. Phys. Lett. 93, 083108 (2008).CrossRefGoogle Scholar
68.Zhang, X., Wang, H., Chen, X.H., Lu, L., Lu, K., Hoagland, R.G., and Misra, A.: High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Appl. Phys. Lett. 88, 173116 (2006).CrossRefGoogle Scholar
69.Zhou, X.W. and Wadley, H.N.G.: Twin formation during the atomic deposition of copper. Acta Mater. 47, 1063 (1999).Google Scholar
70.Zhang, X., Anderoglu, O., Misra, A., and Wang, H.: Influence of deposition rate on the formation of growth twins in sputter-deposited 330 austenitic stainless steel films. Appl. Phys. Lett. 90, 153101 (2007).Google Scholar
71.Lu, L., Shen, Y.F., Chen, X.H., Qian, L.H., and Lu, K.: Ultrahigh strength and high electrical conductivity in copper. Science 304, 422 (2004).CrossRefGoogle ScholarPubMed
72.Zhang, X., Misra, A., Wang, H., Shen, T.D., Nastasi, M., Mitchell, T.E., Hirth, J.P., Hoagland, R.G., and Embury, J.D.: Enhanced hardening in Cu/330 stainless steel multilayers by nanoscale twinning. Acta Mater. 52, 995 (2004).Google Scholar
73.Anderoglu, O., Misra, A., Wang, H., and Zhang, X.: Thermal stability of sputtered Cu films with nanoscale growth twins. J. Appl. Phys. 103, 094322 (2008).Google Scholar
74.Singh, B.N. and Zinkle, S.J.: Defect accumulation in pure fcc metals in the transient regime—a review. J. Nucl. Mater. 206, 212 (1993).CrossRefGoogle Scholar
75.Jager, W. and Trinkaus, H.: Defect ordering in metals under irradiation. J. Nucl. Mater. 205, 394 (1993).CrossRefGoogle Scholar
76.Johnson, P.B. and Mazey, D.J.: The helium gas bubble superlattice–structural features. J. Nucl. Mater. 127, 30 (1985).Google Scholar
77.Johnson, P.B. and Mazey, D.J.: Helium gas bubble lattices in face-centerd-cubic metals. Nature 276, 595 (1978).Google Scholar
78.Johnson, P.B., Thomson, R.W., and Reader, K.: TEM and SEM studies of radiation blistering in helium-implanted copper. J. Nucl. Mater. 273, 117 (1999).Google Scholar
79.Was, G.S.: Fundamentals of Radiation Materials Science: Metals and Alloys (Springer, Berlin, 2007).Google Scholar