Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T05:07:26.423Z Has data issue: false hasContentIssue false

In situ studies on twinning and cracking proximal to insulator–metal transition in self-supported VO2 / Si3N4 membranes

Published online by Cambridge University Press:  03 April 2012

Viswanath Balakrishnan
Affiliation:
Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
Changhyun Ko
Affiliation:
Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
Shriram Ramanathan*
Affiliation:
Harvard School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Mechanisms leading to correlation between structural phase transitions in functional oxides and consequent insulator–metal transitions driven by band gap closure are an active area of research. In cases where large volume changes are present, structural stability considerations become important. Here, we present in situ studies of mechanical instability of VO2 grown on self-supported Si3N4 membranes spanning the structural phase transition boundary of vanadium dioxide. We observe film cracking across the phase transition, and the transition-induced cracks correlate with the symmetry change and the corresponding changes in the optical/electrical response arising from the insulator–metal transition. Transmission electron microscopy studies revealed twinned platelets proximal to crack regions. Interestingly, the membranes are mechanically stable until a large fraction of resistance change occurs across the phase transition. The ability to manipulate the stability and controlled rupture of self-supported membranes through temperature or other stimuli could be of interest to microelectromechanical systems and sensor devices.

Type
Articles
Copyright
Copyright © Materials Research Society 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Hoare, T., Timko, B.P., Santamaria, J., Goya, G.F., Irusta, S., Lau, S., Stefanescu, C.F., Lin, D., Langer, R., and Kohane, D.S.: Magnetically triggered nanocomposite membranes: A versatile platform for triggered drug release. Nano Lett. 11(3), 1395 (2011).CrossRefGoogle ScholarPubMed
2.Hu, S.H., Tsai, C.H., Liao, C.F., Liu, D.M., and Chen, S.Y.: Controlled rupture of magnetic polyelectrolyte microcapsules for drug delivery. Langmuir 24(20), 11811 (2008).CrossRefGoogle ScholarPubMed
3.Liu, T.Y., Liu, K.H., Liu, D.M., Chen, S.Y., and Chen, I.W.: Temperature-sensitive nanocapsules for controlled drug release caused by magnetically triggered structural disruption. Adv. Funct. Mater. 19(4), 616 (2009).CrossRefGoogle Scholar
4.Pohanka, R.C., Freiman, S.W., and Bender, B.A.: Effect of the phase transformation on the fracture behavior of BaTiO3. J. Am. Ceram. Soc. 61(1–2), 72 (1978).CrossRefGoogle Scholar
5.Freiman, S.W.: Fracture behavior of electronic ceramics. Ferroelectrics 102(1), 381 (1990).CrossRefGoogle Scholar
6.Suchicital, C.T.A. and Payne, D.A.: Flux growth of single crystal lead titanate. J. Cryst. Growth 104(2), 211 (1990).CrossRefGoogle Scholar
7.Loughran, G.M., Shield, T.W., and Leo, P.H.: Fracture of shape memory CuAlNi single crystals. Int. J. Solids Struct. 40(2), 271 (2003).CrossRefGoogle Scholar
8.Xiong, F., Liu, Y., and Pagounis, E.: Thermally induced fracture of single crystal Ni-Mn-Ga ferromagnetic shape memory alloy. J. Alloys Compd. 415(1–2), 188 (2006).CrossRefGoogle Scholar
9.Mitsuishi, T.: On the phase transformation of VO2. Jpn. J. Appl. Phys. 6(9), 1060 (1967).CrossRefGoogle Scholar
10.Nagashima, K., Yanagida, T., Tanaka, H., and Kawai, T.: Stress relaxation effect on transport properties of strained vanadium dioxide epitaxial thin films. Phys. Rev. B 74(17), 172106 (2006).CrossRefGoogle Scholar
11.Fillingham, P.J.: Domain structure and twinning in crystals of vanadium dioxide. J. Appl. Phys. 38(12), 4823 (1967).CrossRefGoogle Scholar
12.Marezio, M., Dernier, P.D., and Santoro, A.: Twinning in Cr-doped VO2. Acta Crystallogr., Sect. A 29(6), 618 (1973).CrossRefGoogle Scholar
13.Morin, F.J.: Oxides which show a metal-to-insulator transition at the neel temperature. Phys. Rev. Lett. 3(1), 34 (1959).CrossRefGoogle Scholar
14.Ruzmetov, D., Gopalakrishnan, G., Deng, J., Narayanamurti, V., and Ramanathan, S.: Electrical triggering of metal-insulator transition in nanoscale vanadium oxide junctions. J. Appl. Phys. 106(8), 083702 (2009).CrossRefGoogle Scholar
15.Michael, F.B., Buckman, A.B., Rodger, M.W., Thierry, L., Patrick, G., and Alain, B.: Femtosecond laser excitation of the semiconductor-metal phase transition in VO2. Appl. Phys. Lett. 65(12), 1507 (1994).Google Scholar
16.Viswanath, B., Ko, C., and Ramanathan, S.: Thermoelastic switching with controlled actuation in VO2 thin films. Scr. Mater. 64(6), 490 (2011).CrossRefGoogle Scholar
17.Martins, P., Malhaire, C., Brida, S., and Barbier, D.: On the determination of Poisson’s ratio of stressed monolayer and bilayer submicron thick films. Microsyst. Technol. 15(9), 1343 (2009).CrossRefGoogle Scholar
18.Fan, W., Huang, S., Cao, J., Ertekin, E., Barrett, C., Khanal, D.R., Grossman, J.C., and Wu, J.: Superelastic metal-insulator phase transition in single-crystal VO2 nanobeams. Phys. Rev. B: Condens. Matter 80(24), 241105 (2009).CrossRefGoogle Scholar
19.Ko, C. and Ramanathan, S.: Stability of electrical switching properties in vanadium dioxide thin films under multiple thermal cycles across the phase transition boundary. J. Appl. Phys. 104(8), 086105 (2008).CrossRefGoogle Scholar
20.Rice, R.W. and Pohanka, R.C.: Grain-size dependence of spontaneous cracking in ceramics. J. Am. Ceram. Soc. 62(11–12), 559 (1979).CrossRefGoogle Scholar
21.Singh, J.P., Virkar, A.V., Shetty, D.K., and Gordow, R.S.: Strength-grain size relations in polycrystalline ceramics. J. Am. Ceram. Soc. 62(3–4), 179 (1979).CrossRefGoogle Scholar
22.Rice, R.W., Freiman, S.W., and Mecholsky, J.J.: The dependence of strength-controlling fracture energy on the flaw-size to grain-size ratio. J. Am. Ceram. Soc. 63(3–4), 129 (1980).CrossRefGoogle Scholar
23.Fischer, F.D., Oberaigner, E.R., and Waitz, T.: Crack-stimulated twinning. Scr. Mater. 61(10), 959 (2009).CrossRefGoogle Scholar
24.Hai, S. and Tadmor, E.B.: Deformation twinning at aluminum crack tips. Acta Mater. 51(1), 117 (2003).CrossRefGoogle Scholar
25.Ruda, M., Farkas, D., and Bertolino, G.: Twinning and phase transformations in Zr crack tips. Comput. Mater. Sci. 49(4), 743 (2010).CrossRefGoogle Scholar
26.Christian, J.W. and Mahajan, S.: Deformation twinning. Prog. Mater. Sci. 39(1–2), 1 (1995).CrossRefGoogle Scholar
27.Orzol, J., Trepmann, C.A., Stockhert, B., and Shi, G.: Critical shear stress for mechanical twinning of jadeite an experimental study. Tectonophysics 372(3–4), 135 (2003).CrossRefGoogle Scholar
28.Kibey, S., Liu, J.B., Johnson, D.D., and Sehitoglu, H.: Predicting twinning stress in fcc metals: Linking twin-energy pathways to twin nucleation. Acta Mater. 55(20), 6843 (2007).CrossRefGoogle Scholar
29.Tullis, T.E.: The use of mechanical twinning in minerals as a measure of shear stress magnitudes. J. Geophys. Res. 85(B11), 6263 (1980).CrossRefGoogle Scholar
30.Yang, Z., Ko, C., and Ramanathan, S.: Metal-insulator transition characteristics of VO2 thin films grown on Ge(100) single crystals. J. Appl. Phys. 108(7), 073708 (2010).CrossRefGoogle Scholar
31.Li, J., Gauntt, B.D., and Dickey, E.C.: Microtwinning in highly nonstoichiometric VOx thin films. Acta Mater. 58(15), 5009 (2010).CrossRefGoogle Scholar