Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-28T09:24:30.308Z Has data issue: false hasContentIssue false

Improving Bi2Te3-based thermoelectric nanowire microstructure via thermal processing

Published online by Cambridge University Press:  03 January 2014

Michael P. Siegal*
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Steven J. Limmer
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Jessica L. Lensch-Falk
Affiliation:
Sandia National Laboratories, Livermore, California 94551
Kristopher J. Erickson
Affiliation:
Sandia National Laboratories, Livermore, California 94551
Douglas L. Medlin
Affiliation:
Sandia National Laboratories, Livermore, California 94551
W. Graham Yelton
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
Caitlin Rochford
Affiliation:
Sandia National Laboratories, Albuquerque, New Mexico 87185
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Achieving control of crystalline quality is a key barrier to developing thermoelectric (TE) nanowires. We show that the structural properties of free-standing Bi2(Te.97Se.03)3 nanowire arrays on substrates can be improved by postdeposition annealing. Nanowires were electrochemically deposited into anodized aluminum oxide nanopore templates formed directly on metallized Si(100). The templates were chemically removed prior to annealing in a 3% H2/Ar environment to prevent microcrack formation that results from thermal stresses. Grain sizes grew exponentially with annealing temperature until reaching the full 75-nm diameter of the nanowires at 300 °C; growth was linear above this temperature since grains could grow further only in the axial directions. Crystalline quality, along with the development of the preferred (110) orientation for optimal TE properties, improved with increasing annealing temperature between 200 and 400 °C. However, continued loss of Te composition with annealing led to a mixed phase of Bi2Te3 and Bi4Te3 at 500 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Rowe, D.M.: Thermoelectrics Handbook: Macro to Nano (CRC Press, Taylor and Francis, Boca Raton, FL, 2006).Google Scholar
Huber, T.E., Scott, R., Johnson, S., Brower, T., Belk, J.H., and Hunt, J.H.: Photoresponse in arrays of thermoelectric nanowire junctions. Appl. Phys. Lett. 103, 41114 (2013).CrossRefGoogle Scholar
Hicks, L.D. and Dresselhaus, M.S.: Thermoelectric figure of merit of a one-dimensional conductor. Phys. Rev. B 47(24), 16631 (1993).Google Scholar
Sapp, S.A., Lakshmi, B.B., and Martin, C.R.: Template synthesis of bismuth telluride nanowires. Adv. Mater. 11, 402 (1999).Google Scholar
Prieto, A.L., Sander, M.S., Martin-Gonzalez, M.S., Gronsky, R., Sands, T., and Stacy, A.M.: Electrodeposition of ordered Bi2Te3 nanowire arrays. J. Am. Chem. Soc. 123, 7163 (2001).Google Scholar
Martin-Gonzalez, M.S., Prieto, A.L., Gronsky, R., Sands, T., and Stacy, A.M.: Insights into the electrodeposition of Bi2Te3. J. Electrochem. Soc. 149, C546 (2002).CrossRefGoogle Scholar
Rabin, O., Lin, Y-M., Cronin, S.B., and Dresselhaus, M.S.: Thermoelectric nanowires by electrochemical deposition. Mater. Res. Soc. Symp. Proc. 691, G8.20.1 (2002).Google Scholar
Sander, M.S., Prieto, A.L., Gronsky, R., Sands, T., and Stacy, A.M.: Fabrication of high-density, high aspect ratio, large-area bismuth telluride nanowire arrays by electrodeposition into porous anodic alumina templates. Adv. Mater. 14, 665 (2002).3.0.CO;2-B>CrossRefGoogle Scholar
Huang, Q., Wang, W., Jia, F., and Zhang, J.: Electrochemical assembled p-type Bi2Te3 nanowire arrays. 22nd International Conference on Thermoelectrics, Vol. 410 (2003).Google Scholar
Menke, E.J., Brown, M.A., Li, Q., Hemminger, J.C., and Penner, R.M.: Bismuth telluride (Bi2Te3) nanowires: Synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation. Langmuir 22, 10564 (2006).CrossRefGoogle ScholarPubMed
Trahey, L., Becker, C.R., and Stacy, A.M.: Electrodeposited bismuth telluride nanowire arrays with uniform growth fronts. Nano Lett. 7, 2535 (2007).CrossRefGoogle ScholarPubMed
Wang, W., Zhang, G., and Li, X.: Manipulating growth of thermoelectric Bi2Te3/Sb multilayered nanowire arrays. J. Phys. Chem. C 112, 15190 (2008).CrossRefGoogle Scholar
Li, S., Liang, Y., Qin, J., Toprak, M., and Muhammed, M.: Template electrodeposition of ordered bismuth telluride nanowire arrays. J. Nanosci. Nanotechnol. 9, 1543 (2009).Google Scholar
Mavrokefalos, A., Moore, A.L., Pettes, M.T., Shi, L., Wang, W., and Li, X.: Thermoelectric and structural characterizations of individual electrodeposited bismuth telluride nanowires. J. Appl. Phys. 105, 104318 (2009).CrossRefGoogle Scholar
Chen, C-L., Chen, Y-Y., Lin, S-J., Ho, J.C., Lee, P-C., Chen, C-D., and Harutyunyan, S.R.: Fabrication and characterization of electrodeposited bismuth telluride films and nanowires. J. Phys. Chem. C 114, 3385 (2010).Google Scholar
Lee, J., Berger, A., Cagnon, L., Gosele, U., Nielsch, K., and Lee, J.: Disproportionation of thermoelectric bismuth telluride nanowires as a result of the annealing process. Phys. Chem. Chem. Phys. 12, 15347 (2010).CrossRefGoogle ScholarPubMed
Picht, O., Muller, S., Alber, I., Rauber, M., Lensch-Falk, J., Medlin, D.L., Neumann, R., and Toimil-Molares, M.E.: Tuning the geometrical and crystallographic characteristics of Bi2Te3 nanowires by electrodeposition in ion-track membranes. J. Phys. Chem. 116, 5367 (2012).Google Scholar
Cao, Y.Q., Zhu, T.J., Zhao, X.B., Zhang, X.B., and Tu, J.P.: Nanostructuring and improved performance of ternary Bi-Sb-Te thermoelectric materials. Appl. Phys. A 92, 321 (2008).CrossRefGoogle Scholar
Xie, W., Tang, X., Yan, Y., Zhang, Q., and Tritt, T.M.: High thermoelectric performance BiSbTe alloy with unique low-dimensional structure. J. Appl. Phys. 105, 113713 (2009).Google Scholar
Limmer, S.J., Yelton, W.G., Siegal, M.P., Lensch-Falk, J.L., Pillars, J., and Medlin, D.L.: Electrochemical deposition of Bi2(Te,Se)3 nanowire arrays on Si. J. Electrochem. Soc. 159, D235 (2012).CrossRefGoogle Scholar
Oh, J. and Thompson, C.V.: Selective barrier perforation in porous alumina anodized on substrates. Adv. Mater. 20, 1368 (2008).Google Scholar
Siegal, M.P., Overmyer, D.L., and Kaatz, F.H.: Controlling the site density of multiwall carbon nanotubes via growth conditions. Appl. Phys. Lett. 84, 5156 (2004).Google Scholar
Jeong, S-H. and Lee, K-H.: Fabrication of the aligned and patterned carbon nanotube field emitters using anodic aluminum oxide nano-template on a Si wafer. Synth. Met. 139, 385 (2003).Google Scholar
Cafaro, M.L., Bardi, G., and Piacente, V.: Vaporization study of solid Bi2Se3. J. Chem. Eng. Data 29, 78 (1984).Google Scholar
Bardi, G., Cafaro, M.L., Gianfreda, V.D., and Piacente, V.: Vaporization behavior and the vapor pressure of solid Bi2Te3. High Temp. Sci. 16, 377 (1983).Google Scholar
Wiese, J.R. and Muldawer, L.: Lattice constants of Bi2Te3-Bi2Se3 solid solution alloys. J. Phys. Chem. Solids 15, 13 (1960).Google Scholar
Martin-Gonzalez, M., Snyder, G.J., Prieto, M.L., Gronsky, R., Sands, T., and Stacy, A.M.: Direct electrodeposition of highly dense 50 nm Bi2Te3-ySey nanowire arrays. Nano Lett. 7, 973 (2003).Google Scholar
Sander, M.S., Gronsky, R., Sands, T., and Stacy, A.M.: Structure of bismuth telluride nanowire arrays fabricated by electrodeposition into porous anodic alumina templates. Chem. Mater. 15, 335 (2003).Google Scholar
Li, W-J.: Electrodeposition of bismuth telluride films from a nonaqueous solvent. Electrochim. Acta 54, 7167 (2009).CrossRefGoogle Scholar
Li, F-H. and Wang, W.: Electrodeposition of p-type BixSb2-xTey thermoelectric film from dimethyl sulfoxide solution. Electrochim. Acta 55, 5000 (2010).CrossRefGoogle Scholar
Fleurial, J.P., Gailliard, L., and Triboulet, R.: Thermal properties of high quality single crystals of bismuth telluride—Part I: Experimental characterization. J. Phys. Chem. Solids 49, 1237 (1988).Google Scholar
Medlin, D.L. and Snyder, G.J.: Atomic-scale interfacial structure in rock salt and tetradymite chalcogenide thermoelectric materials. J. Mater. 65, 390 (2013).Google Scholar
Sharma, P.A., Lima Sharma, A.L., Medlin, D.L., Morales, A.M., Yang, N., Barney, M., He, J., Drymiotis, F., Turner, J., and Tritt, T.M.: Low phonon thermal conductivity of layered (Bi2)m-(Bi2Te3)n thermoelectric alloys. Phys. Rev. B 83, 235209 (2011).Google Scholar
Lotgering, F.K.: Topotactical reactions with ferromagnetic oxides having hexagonal crystal structures-I. J. Inorg. Nucl. Chem. 9, 113 (1959).Google Scholar
Furushima, R., Tanaka, S., Kato, Z., and Uematsu, K.: Orientation distribution - Lotgering factor relationship in a polycrystalline material - as an example of bismuth titanate prepared by a magnetic field. J. Ceram. Soc. Jpn. 118, 921 (2010).Google Scholar
Ceresara, S., Fanciulli, C., Passaretti, F., and Vasilevskiy, D.: Texturing of (Bi0.2Sb0.8)2Te3 nanopowders by open die pressing. J. Electron. Mater. 42, 1529 (2013).Google Scholar