Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2024-12-18T08:28:02.049Z Has data issue: false hasContentIssue false

Improved critical current densities in ex situ processed MgB2 tapes fabricated with chemically treated powder

Published online by Cambridge University Press:  03 March 2011

H. Fujii*
Affiliation:
Superconducting Materials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
K. Togano
Affiliation:
Superconducting Materials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
K. Ozawa
Affiliation:
Photocatalytic Materials Center, National Institute for Materials Science, Tsukuba, Ibaraki 305-0047, Japan
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Fe-sheathed MgB2 tapes were fabricated using powder chemically treated through an ex situ process employing a powder-in-tube (PIT) technique. The treatment of MgB2 powder in a benzene solution of benzoic acid caused the pulverization and disappearance of large grains. Compared with the pristine powder without treatment, the tape made from this powder showed a fivefold increase in critical current density (Jc) in 10 T. This was due to the pulverization of grains by the chemical treatment and the removal of surface MgO layers from MgB2 grains by dissolution in the acid solution. The removal of MgO layers was effective in promoting substitution of carbon from the solvent for boron.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Nagamatsu, J., Nakagawa, N., Muranaka, T., Zenitani, Y., and Akimitsu, J.: Superconductivity at 39 K in magnesium diboride. Nature 410, 63 (2001).CrossRefGoogle ScholarPubMed
2Fujii, H., Togano, K., and Kumakura, H.: Enhancement of critical current densities of powder-in-tube processed MgB2 tapes by using MgH2 as a precursor powder. Supercond. Sci. Technol. 15, 1571 (2002).CrossRefGoogle Scholar
3Fujii, H., Togano, K., and Kumakura, H.: Fabrication of MgB2 tapes sheathed with carbon steels by ex situ and in situ methods. IEEE Trans. Appl. Supercond. 13, 3217 (2003).CrossRefGoogle Scholar
4Jin, S., Mavoori, H., and van Dover, R.B.: High critical currents in iron-clad superconducting MgB2 wires. Nature 411, 563 (2001).CrossRefGoogle ScholarPubMed
5Suo, H.L., Beneduce, C., Dhallé, M., Musolino, N., Genoud, J-Y., and Flükiger, R.: Large transport critical currents in dense Fe- and Ni-clad MgB2 superconducting tapes. Appl. Phys. Lett. 79, 3116 (2001).CrossRefGoogle Scholar
6Fujii, H., Kumakura, H., and Togano, K.: Improved critical current in MgB2 tapes sheathed with carbon steels. J. Mater. Res. 17, 2339 (2002).CrossRefGoogle Scholar
7Fujii, H., Kumakura, H., and Togano, K.: Influence of MgB2 powder quality on the transport properties of Cu-sheathed MgB2 tapes. Physica C 363, 237 (2001).CrossRefGoogle Scholar
8Nakane, T., Kitaguchi, H., and Kumakura, H.: Improvement in the critical current density of ex situ powder in tube processed MgB2 tapes by utilizing powder prepared from an in situ processed tape. Appl. Phys. Lett. 88, 022513 (2006).CrossRefGoogle Scholar
9Fang, H., Padmanabhan, S., Zhou, Y.X., and Salama, K.: High critical current density in iron-clad MgB2 tapes. Appl. Phys. Lett. 82, 4113 (2003).CrossRefGoogle Scholar
10Fisher, C., Rodig, C., Hassler, W., Perner, O., Eckert, J., Nenkov, K., Fuchs, G., Wendrock, H., Holzapfel, B., and Schultz, L.: Preparation of MgB2 tapes using a nanocrystalline partially reacted precursor. Appl. Phys. Lett. 83, 1803 (2003).CrossRefGoogle Scholar
11Takenobu, T., Ito, T., Chi, D.H., Prassides, K., and Iwasa, Y.: Intralayer carbon substitution in the MgB2 superconductor. Phys. Rev. B 64, 134513 (2001).CrossRefGoogle Scholar
12Bharathi, A., Balaselvi, S.J., Kalavathi, S., Reddy, G.L.N., Sastry, V.S., Hariharan, Y., and Radhakrishnan, T.S.: Carbon solubility and superconductivity in MgB2. Physica C 370, 211 (2002).CrossRefGoogle Scholar
13Lee, S., Masui, T., Yamamoto, A., Uchiyama, H., and Tajima, S.: Carbon-substituted MgB2 single crystals. Physica C 397, 7 (2003).CrossRefGoogle Scholar
14Wilke, R.H.T., Bud’ko, S.L., Canfield, P.C., Finnemore, D.K., Suplinskas, R.J., and Hannahs, S.T.: Systematic effects of carbon doping on the superconducting properties of Mg(B1- xCx)2. Phys. Rev. Lett. 92, 217003 (2004).CrossRefGoogle Scholar
15Dou, S.X., Soltanian, S., Horvat, J., Wang, X.L., Zhou, S.H., Ionescu, M., Liu, H.K., Monroe, P., and Tomsic, M.: Enhancements of the critical current density and flux pinning of MgB2 superconductor by nanoparticle SiC doping. Appl. Phys. Lett. 81, 3419 (2002).CrossRefGoogle Scholar
16Yamada, H., Hirakawa, M., Kumakura, H., and Kitaguchi, H.: Effect of aromatic hydrocarbon addition on in situ powder-in-tube processed MgB2 tapes. Supercond. Sci. Technol. 19, 175 (2006).CrossRefGoogle Scholar
17Kováč, P., Hušek, I., Melišek, T., Grovenor, C.R.M., Haigh, S., and Jones, H.: Improvement of the current carrying capability of ex situ MgB2 wires by normal particle additions. Supercond. Sci. Technol. 17, 1225 (2004).CrossRefGoogle Scholar