Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-27T00:51:33.858Z Has data issue: false hasContentIssue false

Icosahedral nanophases in the Al–Mn–Ce system

Published online by Cambridge University Press:  31 January 2011

R. Manaila
Affiliation:
National Institute for Physics of Materials, P.O.B. MG 7, RO-76900 Bucharest-Magurele, Romania
R. Popescu
Affiliation:
National Institute for Physics of Materials, P.O.B. MG 7, RO-76900 Bucharest-Magurele, Romania
A. Jianu
Affiliation:
National Institute for Physics of Materials, P.O.B. MG 7, RO-76900 Bucharest-Magurele, Romania
M. Constantin
Affiliation:
National Institute for Physics of Materials, P.O.B. MG 7, RO-76900 Bucharest-Magurele, Romania
A. Devenyi
Affiliation:
National Institute for Physics of Materials, P.O.B. MG 7, RO-76900 Bucharest-Magurele, Romania
Get access

Extract

Nano-icosahedral phases were prepared by melt-spinning in the AlMnCe system (Al ≥ 89 at.%). Ce-induced structure alterations are reported by x-ray diffraction for the icosahedral (i) AlMnCe phase. They comprise apparition of superstructure diffraction lines, due to chemical ordering in the 6-dimensional icosahedral lattice, which gradually changes from a simple to a face-centered (FCI) type. Also, strong anomalies of diffracted intensities, with reference to model FCI phases, support Ce preferential location on a special set of sites. Microstructure investigations show a nanodispersion of i-AlMnCe in an Al-rich matrix, suggesting a low nucleation barrier of this metastable phase in the melt.

Type
Articles
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Inoue, A., Kimura, H.M., Sasamori, H.M., and Kita, K., in Proc. of the 6th Int. Conf. Quasicrystals, Tokyo, 1997, p. 273.Google Scholar
2.Inoue, A., Watanabe, M., Kimura, H., Takahashi, F., Nagata, A., and Masumoto, T., Mater. Trans. JIM 33, 723 (1992).Google Scholar
3.Inoue, A., Ohtera, K., and Masumoto, T., Jap. J. Appl. Phys. 27, L736 (1988).CrossRefGoogle Scholar
4.Janot, C., in Proc. of the International Conference on Aperiodic Crystals, edited by de Boissieu, M., Verger-Gaugry, J-L., and Currat, R. (Word Scientific, Singapore, 1998), p. 699.Google Scholar
5.Inoue, A., Yokoyama, Y., and Masumoto, T., Mater. Sci. Eng. A 181/182, 850 (1994).CrossRefGoogle Scholar
6.Manaila, R., Popescu, R., Jianu, A., and Devenyi, A., in Proc. of the 6th European Powder Diffraction Conference EPDIC 6, Budapest, 1998 (in press).Google Scholar
7.Inoue, A., Kimura, H.M., Sasamori, K., and Masumoto, T., Mater. Trans. JIM 36, 6 (1995).CrossRefGoogle Scholar
8.Inoue, A., Kimura, H., and Kita, K., in New Horizonts in Quasicrystals, edited by Goldman, A.I., Sordelet, D.J., Thiel, P.A., and Dubois, J.M. (World Scientific, Singapore, 1997), p. 256.Google Scholar
9.Mihalkovic, M., Zhu, W-J., Henley, C.I., and Oxborrow, M., Phys. Rev. B 53, 9002 (1996).Google Scholar
10.Fowler, H.A., Mozer, B., and Sims, J., Phys. Rev. B 37, 3906 (1988).Google Scholar
11.Langford, J.I., Delhez, R., de Keijser, Th.H., and Mittemeijer, E.J., Aust. J. Phys. 41, 173 (1988).CrossRefGoogle Scholar
12.Cahn, J.W., Schechtman, D., and Gratias, D., J. Mater. Res. 1, 13 (1986).CrossRefGoogle Scholar
13.Popescu, R., Vasile, E., Labar, J., Constantin, M., Macovei, D., and Manaila, R. (unpublished).Google Scholar
14.Inoue, A., Kimura, H.M., Sasamori, K., Matsumoto, T., Sci. Rep. RITU A 42, 165 (1996).Google Scholar
15.Henley, C.L., Phil. Mag. Lett. 58, 87 (1988).Google Scholar
16.Duneau, M. and Oguey, C., J. Phys. 50, 135 (1989).Google Scholar
17.Janot, C., Dubois, J-M., de Boissieu, M., and Pannetier, J., Physica B 156–157, 25 (1989).Google Scholar
18.Sugiyama, K., Kaji, N., and Hiraga, K., Acta Crystallogr., Sect. C 54, 445 (1998).Google Scholar
19.Yang, Q.B., Phil. Mag. B 58, 47 (1988).CrossRefGoogle Scholar
20.Katz, A. and Gratias, D., J. Non. Cryst. Solids B 153 & 154, 187 (1993).CrossRefGoogle Scholar
21.Mukhopadhyai, N.K., Ranganathan, S., and Chattopadhyay, K., Phil. Mag. Lett. 56, 121 (1987).CrossRefGoogle Scholar
22.Mukhopadhyay, N.K., Proc. 6th Internat. Conf. Quasicrystals, Tokyo 1997, p. 391.Google Scholar
23.Cornier-Quiquandon, M., Quivy, A., Lefebvre, S., Elkaim, E., Heger, H., and Gratias, D., Phys. Rev. B 44, 2071 (1991).CrossRefGoogle Scholar
24.Popescu, R., Macovei, D., Manciu, M., Zavaliche, F., Fratiloiu, D., Jianu, A., Devenyi, A., Manaila, R., Xie, Y., Hu, T., Orton, B.R., Cernik, R.J., and Tang, C.C., J. Phys.: Condens. Matter 9, 7523 (1997).Google Scholar
25.Boudard, M., de Boissieu, M., Janot, C., Dubois, J.M., and Dong, C., Phil. Mag. Lett. 64, 197 (1991).CrossRefGoogle Scholar
26.Luo, Z., Zhang, S., Tang, Y., and Zhao, D., Scripta Metall. 28, 1513 (1993).Google Scholar
27.Langsdorf, A., Ritter, F., and Assmus, W., Proc. 6th Internat. Conf. Quasicrystals, Tokyo 1997, p. 321.Google Scholar
28.Ohno, T. and Ishimasa, T., Proc. 6th Internat. Conf. Quasicrystals, Tokyo 1997, p. 39.Google Scholar
29.Niikura, A., Tsai, A.P., Inoue, A., and Masumoto, T., Jpn. J. Appl. Phys. 33, L1538 (1994).CrossRefGoogle Scholar
30.Bancel, P.A., Heiney, P.A., Stephens, P.W., Goldman, A.I., and Horn, P.M., Phys. Rev. Lett. 54, 2422 (1985).Google Scholar
31.Manaila, R., Jianu, A., Popescu, R., and Devenyi, A., J. Phys. Condens. Matter 6, 2307 (1994).Google Scholar