Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-26T05:20:50.575Z Has data issue: false hasContentIssue false

Hydrothermal synthesis of multiwall carbon nanotubes

Published online by Cambridge University Press:  31 January 2011

Yury Gogotsi*
Affiliation:
University of Illinois at Chicago, Department of Mechanical Engineering, 842 West Taylor Street, M/C 251, Chicago, Illinois 60607–7022
Joseph A. Libera
Affiliation:
University of Illinois at Chicago, Department of Mechanical Engineering, 842 West Taylor Street, M/C 251, Chicago, Illinois 60607–7022
Masahiro Yoshimura
Affiliation:
Tokyo Institute of Technology, Materials and Structures Laboratory, 4259 Nagatsuta, Midori-ku, Yokohama 226, Japan
*
a)Address correspondence to this author.[email protected]
Get access

Abstract

Multiwall open-end and closed carbon nanotubes with the wall thickness from several to more than 100 carbon layers were produced by a principally new method— hydrothermal synthesis—using polyethylene/water mixtures in the presence of nickel at 700–800 °C under 60–100 MPa pressure. An important feature of hydrothermal nanotubes is a small wall thickness, which is about 10% of the large inner diameter of 20–800 nm. Closed nanotubes were leak-tight by virtue of holding encapsulated water at high vacuum and can be used as test tubes for in situ experiments in transmission electron microscope (TEM). Raman microspectroscopy analysis of single nanotubes shows a well-ordered graphitic structure, in agreement with high-resolution TEM. The hydrothermal synthesis has the potential for producing multiwall nanotubes for a variety of applications. The fabrication of nanotubes under hydrothermal conditions may explain their presence in coals and carbonaceous rocks and suggests that they should be present in natural graphite deposits formed under hydrothermal conditions.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 2000

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Iijima, S., MRS Bull. 19, 43 (1994).CrossRefGoogle Scholar
2.Poncharal, P., Wang, Z.L., Ugarte, D., and Heer, W.A. d., Science 283, 1513 (1999).CrossRefGoogle Scholar
3.Chen, P., Wu, X., Lin, J., and Tan, K.L., Science 285, 91 (1999).CrossRefGoogle Scholar
4.Baughman, R. H., Cui, C., Zakhidov, A.A., Igbal, Z., Barisci, J.N., Spinks, G.M., Wallace, G.G., Mazzoldi, A., De Rossi, D., Rinzler, A.G., Jaschinski, O., Roth, S., and Kertesz, M., Science 284, 1340 (1999).CrossRefGoogle Scholar
5.Ajayan, P.M., Stephan, O., Redlich, P., and Colliex, C., Nature 375, 564 (1995).CrossRefGoogle Scholar
6.Saito, S., Science 278, 77 (1997).CrossRefGoogle Scholar
7.Inganas, O. and Lundstrum, I., Science 284, 1281 (1999).CrossRefGoogle Scholar
8.Mukhopadhyay, K., Koshio, A., Tanaka, N., and Shinohara, H., Jpn. J. Appl. Phys. 37, Part 2, L1257 (1998).CrossRefGoogle Scholar
9.Hsu, W.K., Hare, J.P., Terrones, M., Kroto, H.W., Walton, D.R.M, and Harris, P.J.F, Nature 377, 687 (1995).CrossRefGoogle Scholar
10.Siskin, M. and Katritzky, R., Science 254, 231 (1991).CrossRefGoogle Scholar
11.Gogotsi, Y. G. and Yoshimura, M., Nature 367, 628 (1994).CrossRefGoogle Scholar
12.Gogotsi, Y., Kraft, T., Nickel, K.G., and Zvanut, M.E., Diam. Relat. Mater. 7, 1459 (1998).CrossRefGoogle Scholar
13.Libera, J.A. and Gogotsi, Y.G., J. Am. Ceram. Soc. 82, 2942 (1999).Google Scholar
14.Gogotsi, Y.G. and Nickel, K.G., Carbon 36, 937 (1998).CrossRefGoogle Scholar
15.Rao, A. M., Ritcher, E., Bandow, S., Chase, B., Eklund, P.C., Williams, K.A., Fang, S., Subbaswamy, K.R., Menon, M., Thess, A., Smalley, R.E., Dresselhaus, G., and Dresselhaus, M.S., Science 275, 187 (1997).CrossRefGoogle Scholar
16.Ajayan, P. M., Ebbesen, T.W., Ichihashi, T., Iijima, S., Tanigaka, K., and Hiura, H., Nature 362, 522 (1993).CrossRefGoogle Scholar
17.Tsang, S.C., Chen, Y.K., Harris, P.J.F, and Green, M.L.H, Nature 372, 159 (1994).CrossRefGoogle Scholar
18.Endo, M., Saito, R., Dresselhaus, M.S., and Dresselhaus, G., in Carbon Nanotubes, edited by Ebbesen, T.W. (CRC Press, Boca Raton, FL, 1997), pp. 35110.Google Scholar
19.Hamilton, E.J.M, Dolan, S.E., Mann, C.M., Colijn, H.O., McDonald, C.A., and Shore, S.G., Science 260, 659 (1993).CrossRefGoogle Scholar
20.Libera, J.A. and Gogotsi, Y., Carbon 38, (2000, in press).Google Scholar
21.Suchanek, W., Libera, J., Gogotsi, Y., and Yoshimura, M. (1999, unpublished).Google Scholar
22.Hiura, H., Ebbesen, T.W., Tanigaki, K., and Takahashi, H., Chemical Physics Letters 202, 509 (1993).CrossRefGoogle Scholar
23.Ebbesen, T.W., Physics Today, June, 26–32 (1996).CrossRefGoogle Scholar
24.Blank, V., Polyakov, E.V., Kalnitskiy, B.A., Nuzhdin, A.A., Alshevskiy, Yu.L., Bangert, U., Harvey, A.J., and Davock, H.J., Thin Solid Films 346, 86 (1999).CrossRefGoogle Scholar
25.Wong, E.W., Sheehan, P.E., and Lieber, C.M., Science 277, 1971 (1997).CrossRefGoogle Scholar
26.Osawa, E., Osawa, M., Fang, P-H., Kusunoki, M., Tohji, K., and Kudoh, T., (1999, unpublished).Google Scholar
27.Yoshimura, M., J. Mater. Res. 13, 796 (1998).CrossRefGoogle Scholar