Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-24T11:51:00.178Z Has data issue: false hasContentIssue false

Hydrothermal synthesis of carbon nanotube–titania composites for enhanced photocatalytic performance

Published online by Cambridge University Press:  26 May 2020

Brian M. Everhart
Affiliation:
Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
Montgomery Baker-Fales
Affiliation:
Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
Bailey McAuley
Affiliation:
Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
Eric Banning
Affiliation:
Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
Haider Almkhelfe
Affiliation:
Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
Tyson C. Back
Affiliation:
Materials and Manufacturing Directorate, Air Force Research Laboratory, WPAFB, Ohio 45433, USA
Placidus B. Amama*
Affiliation:
Tim Taylor Department of Chemical Engineering, Kansas State University, Manhattan, Kansas 66506, USA
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Nanosized, well-dispersed titania particles were synthesized via a hydrothermal method using multiwalled carbon nanotubes (MWCNTs) as structural modifiers during the nucleation process to decrease aggregation. Synthesized TiO2/MWCNT composites containing different amounts of MWCNTs were characterized using N2 physisorption, XRD, spectroscopic techniques (Raman, UV-visible, and X-ray photoelectron), and electron microscopy to illuminate the morphology, crystal structure, and surface chemistry of the composites. Photocatalytic performance was evaluated by measuring the degradation of acetaldehyde in a batch reactor under UV illumination. Average rate constants decrease in the following order: TiO2/MWCNT-1% > TiO2 > TiO2/MWCNT-5%. Addition of MWCNTs beyond the optimum loading ratio of 1:100 (MWCNT:TiO2) diminishes the effectiveness of the photocatalyst and the synergistic effect between MWCNTs and TiO2. The primary mechanism for photocatalytic activity enhancement in TiO2/MWCNT-1% is thought to be due to increased porosity, hydroxyl enrichment on the surface, and high dispersion of TiO2 particles.

Type
Article
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 3738 (1972).CrossRefGoogle Scholar
Hoffmann, M.R., Martin, S.T., Choi, W., and Bahnemann, D.W.: Environmental applications of semiconductor photocatalysis. Chem. Rev. 95, 6996 (1995).CrossRefGoogle Scholar
Kjellstrom, T., Lodh, M., McMichael, T., Ranmuthugala, G., Shrestha, R., and Kingsland, S.: Air and water pollution: Burden and strategies for control. In Disease Control Priorities in Developing Countries, 2nd ed., Jamison, D.T., Breman, J.G., Measham, A.R., Alleyne, G., Claeson, M., Evans, D.B., Jha, P., Mills, A., and Musgrove, P., eds. (Washington (DC), Oxford University Press, 2006); pp. 817832.Google ScholarPubMed
Amama, P.B., Itoh, K., and Murabayashi, M.: Photocatalytic oxidation of trichloroethylene in humidified atmosphere. J. Mol. Catal. A: Chem. 176, 165172 (2001).CrossRefGoogle Scholar
Amama, P.B., Itoh, K., and Murabayashi, M.: Gas-phase photocatalytic degradation of trichloroethylene on pretreated TiO2. Appl. Catal., B 37, 321330 (2002).CrossRefGoogle Scholar
Amama, P.B., Itoh, K., and Murabayashi, M.: Photocatalytic degradation of trichloroethylene in dry and humid atmospheres: Role of gas-phase reactions. J. Mol. Catal. A: Chem. 217, 109115 (2004).CrossRefGoogle Scholar
Amama, P.B., Itoh, K., and Murabayashi, M.: Effect of RuO2 deposition on the activity of TiO2: Photocatalytic oxidation of trichloroethylene in aqueous phase. J. Mater. Sci. 39, 43494351 (2004).CrossRefGoogle Scholar
Huang, D., Liao, S., Quan, S., Liu, L., He, Z., Wan, J., and Zhou, W.: Preparation and characterization of anatase N–F-codoped TiO2 sol and its photocatalytic degradation for formaldehyde. J. Mater. Res. 22, 23892397 (2007).CrossRefGoogle Scholar
Chan, A.H.C., Porter, J.F., Barford, J.P., and Chan, C.K.: Effect of thermal treatment on the photocatalytic activity of TiO2 coatings for photocatalytic oxidation of benzoic acid. J. Mater. Res. 17, 17581765 (2002).CrossRefGoogle Scholar
Wen, J., Li, X., Liu, W., Fang, Y., Xie, J., and Xu, Y.: Photocatalysis fundamentals and surface modification of TiO2 nanomaterials. Chin. J. Catal. 36, 20492070 (2015).CrossRefGoogle Scholar
Fujishima, A., Rao, T.N., and Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 121 (2000).CrossRefGoogle Scholar
Trépanier, M., Dalai, A.K., and Abatzoglou, N.: Synthesis of CNT-supported cobalt nanoparticle catalysts using a microemulsion technique: Role of nanoparticle size on reducibility, activity and selectivity in Fischer–Tropsch reactions. Appl. Catal., A 374, 7986 (2010).CrossRefGoogle Scholar
Prasai, B., Cai, B., Underwood, M.K., Lewis, J.P., and Drabold, D.A.: Properties of amorphous and crystalline titanium dioxide from first principles. J. Mater. Sci. 47, 75157521 (2012).CrossRefGoogle Scholar
Frederick, J.E., Snell, H.E., and Haywood, E.K.: Solar ultraviolet radiation at the earth’s surface. Photochem. Photobiol. 50, 443450 (1989).CrossRefGoogle Scholar
Heller, A.: Conversion of sunlight into electrical power and photoassisted electrolysis of water in photoelectrochemical cells. Acc. Chem. Res. 14, 154162 (1981).CrossRefGoogle Scholar
Cowan, A.J., Tang, J., Leng, W., Durrant, J.R., and Klug, D.R.: Water splitting by nanocrystalline TiO2 in a complete photoelectrochemical cell exhibits efficiencies limited by charge recombination. J. Phys. Chem. C 114, 42084214 (2010).CrossRefGoogle Scholar
Asahi, R., Morikawa, T., Ohwaki, T., Aoki, K., and Taga, Y.: Visible-light photocatalysis in nitrogen-doped titanium oxides. Science 293, 269271 (2001).CrossRefGoogle ScholarPubMed
Wang, Y., Wang, Y., Meng, Y., Ding, H., Shan, Y., Zhao, X., and Tang, X.: A highly efficient visible-light-activated photocatalyst based on bismuth- and sulfur-codoped TiO2. J. Phys. Chem. C 112, 66206626 (2008).CrossRefGoogle Scholar
Gai, Y., Li, J., Li, S-S., Xia, J-B., and Wei, S-H.: Design of narrow-gap TiO2: A passivated codoping approach for enhanced photoelectrochemical activity. Phys. Rev. Lett. 102, 036402 (2009).CrossRefGoogle ScholarPubMed
Vijayan, B.K., Dimitrijevic, N.M., Finkelstein-Shapiro, D., Wu, J., and Gray, K.A.: Coupling titania nanotubes and carbon nanotubes to create photocatalytic nanocomposites. ACS Catal. 2, 223229 (2012).CrossRefGoogle Scholar
Woan, K., Pyrgiotakis, G., and Sigmund, W.: Photocatalytic carbon-nanotube–TiO2 composites. Adv. Mater. 21, 22332239 (2009).CrossRefGoogle Scholar
An, G., Ma, W., Sun, Z., Liu, Z., Han, B., Miao, S., Miao, Z., and Ding, K.: Preparation of titania/carbon nanotube composites using supercritical ethanol and their photocatalytic activity for phenol degradation under visible light irradiation. Carbon 45, 17951801 (2007).CrossRefGoogle Scholar
Silva, C.G. and Faria, J.L.: Photocatalytic oxidation of benzene derivatives in aqueous suspensions: Synergic effect induced by the introduction of carbon nanotubes in a TiO2 matrix. Appl. Catal., B 101, 8189 (2010).CrossRefGoogle Scholar
Li, N., Ma, Y., Wang, B., Huang, Y., Wu, Y., Yang, X., and Chen, Y.: Synthesis of semiconducting SWNTs by arc discharge and their enhancement of water splitting performance with TiO2 photocatalyst. Carbon 49, 51325141 (2011).CrossRefGoogle Scholar
Zhang, W-D., Xu, B., and Jiang, L-C.: Functional hybrid materials based on carbon nanotubes and metal oxides. J. Mater. Chem. 20, 63836391 (2010).CrossRefGoogle Scholar
Tan, L-L., Ong, W-J., Chai, S-P., and Mohamed, A.: Reduced graphene oxide-TiO2 nanocomposite as a promising visible-light-active photocatalyst for the conversion of carbon dioxide. Nanoscale Res. Lett. 8, 19 (2013).CrossRefGoogle ScholarPubMed
Long, Y., Lu, Y., Huang, Y., Peng, Y., Lu, Y., Kang, S-Z., and Mu, J.: Effect of C60 on the photocatalytic activity of TiO2 nanorods. J. Phys. Chem. C 113, 1389913905 (2009).CrossRefGoogle Scholar
Yu, J., Ma, T., Liu, G., and Cheng, B.: Enhanced photocatalytic activity of bimodal mesoporous titania powders by C60 modification. Dalton Trans. 40, 66356644 (2011).CrossRefGoogle ScholarPubMed
Jiang, G., Lin, Z., Chen, C., Zhu, L., Chang, Q., Wang, N., Wei, W., and Tang, H.: TiO2 nanoparticles assembled on graphene oxide nanosheets with high photocatalytic activity for removal of pollutants. Carbon 49, 26932701 (2011).CrossRefGoogle Scholar
Xiang, Q., Yu, J., and Jaroniec, M.: Preparation and enhanced visible-light photocatalytic H2-production activity of graphene/C3N4 composites. J. Phys. Chem. C 115, 73557363 (2011).CrossRefGoogle Scholar
Fan, W., Lai, Q., Zhang, Q., and Wang, Y.: Nanocomposites of TiO2 and reduced graphene oxide as efficient photocatalysts for hydrogen evolution. J. Phys. Chem. C 115, 1069410701 (2011).CrossRefGoogle Scholar
Wang, C-C. and Ying, J.Y.: Sol–gel synthesis and hydrothermal processing of anatase and rutile titania nanocrystals. Chem. Mater. 11, 31133120 (1999).CrossRefGoogle Scholar
Cheng, H., Ma, J., Zhao, Z., and Qi, L.: Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7, 663671 (1995).CrossRefGoogle Scholar
Kotsyubynsky, V.O., Myronyuk, I.F., Myronyuk, L.I., Chelyadyn, V.L., Mizilevska, M.H., Hrubiak, A.B., Tadeush, O.K., and Nizamutdinov, F.M.: The effect of pH on the nucleation of titania by hydrolysis of TiCl4. Mater. Werkst. 47, 288294 (2016).CrossRefGoogle Scholar
Zhang, B., Shi, R., Zhang, Y., and Pan, C.: CNTs/TiO2 composites and its electrochemical properties after UV light irradiation. Prog. Nat. Sci.: Mater. Int. 23, 164169 (2013).CrossRefGoogle Scholar
Jitianu, A., Cacciaguerra, T., Benoit, R., Delpeux, S., Béguin, F., and Bonnamy, S.: Synthesis and characterization of carbon nanotubes–TiO2 nanocomposites. Carbon 42, 11471151 (2004).CrossRefGoogle Scholar
Silva, R.M., Noremberg, B.S., Marins, N.H., Milne, J., Zhitomirsky, I., and Carreño, N.L.V.: Microwave-assisted hydrothermal synthesis and electrochemical characterization of niobium pentoxide/carbon nanotubes composites. J. Mater. Res. 34, 592599 (2019).CrossRefGoogle Scholar
Hulin, M., Caillaud, D., and Annesi-Maesano, I.: Indoor air pollution and childhood asthma: Variations between urban and rural areas. Indoor Air 20, 502514 (2010).CrossRefGoogle ScholarPubMed
Marchand, C., Bulliot, B., Le Calvé, S., and Mirabel, P.: Aldehyde measurements in indoor environments in Strasbourg (France). Atmos. Environ. 40, 13361345 (2006).CrossRefGoogle Scholar
An, T., Chen, J., Nie, X., Li, G., Zhang, H., Liu, X., and Zhao, H.: Synthesis of carbon nanotube–anatase TiO2 sub-micrometer-sized sphere composite photocatalyst for synergistic degradation of gaseous styrene. ACS Appl. Mater. Interfaces 4, 59885996 (2012).CrossRefGoogle Scholar
Chen, J., Li, G., Huang, Y., Zhang, H., Zhao, H., and An, T.: Optimization synthesis of carbon nanotubes-anatase TiO2 composite photocatalyst by response surface methodology for photocatalytic degradation of gaseous styrene. Appl. Catal., B 123–124, 6977 (2012).CrossRefGoogle Scholar
Suchanek, W.L. and Riman, R.E.: Hydrothermal synthesis of advanced ceramic powders. Adv. Sci. Technol. 45, 184193 (2006).CrossRefGoogle Scholar
Mutuma, B.K., Shao, G.N., Kim, W.D., and Kim, H.T.: Sol–gel synthesis of mesoporous anatase–brookite and anatase–brookite–rutile TiO2 nanoparticles and their photocatalytic properties. J. Colloid Interf. Sci. 442, 17 (2015).CrossRefGoogle ScholarPubMed
Zhang, Y., Tang, Z-R., Fu, X., and Xu, Y-J.: TiO2–graphene nanocomposites for gas-phase photocatalytic degradation of volatile aromatic pollutant: Is TiO2–graphene truly different from other TiO2–carbon composite materials? ACS Nano 4, 73037314 (2010).CrossRefGoogle ScholarPubMed
Xia, X-H., Jia, Z-J., Yu, Y., Liang, Y., Wang, Z., and Ma, L-L.: Preparation of multi-walled carbon nanotube supported TiO2 and its photocatalytic activity in the reduction of CO2 with H2O. Carbon 45, 717721 (2007).CrossRefGoogle Scholar
Zhu, Y., Liu, T., and Ding, C.: Structural characterization of TiO2 ultrafine particles. J. Mater. Res. 14, 442446 (1999).CrossRefGoogle Scholar
Spurr, R.A. and Myers, H.: Quantitative analysis of anatase-rutile mixtures with an X-ray diffractometer. Anal. Chem. 29, 760762 (1957).CrossRefGoogle Scholar
Papo, C., Tetana, Z., Franklyn, P., and Mhlanga, S.: Synthesis and study of carbon/TiO2 and carbon/TiO2 core–shell micro-/nanospheres with increased density. J. Mater. Res. 28, 440448 (2013).CrossRefGoogle Scholar
Khodakov, A.Y., Chu, W., and Fongarland, P.: Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem. Rev. 107, 16921744 (2007).CrossRefGoogle ScholarPubMed
Li, J., Xu, Y., Wu, D., and Sun, Y.: Hollow mesoporous silica sphere supported cobalt catalysts for F–T synthesis. Catal. Today 148, 148152 (2009).CrossRefGoogle Scholar
Yu, Y., Yu, J.C., Chan, C-Y., Che, Y-K., Zhao, J-C., Ding, L., Ge, W-K., and Wong, P-K.: Enhancement of adsorption and photocatalytic activity of TiO2 by using carbon nanotubes for the treatment of azo dye. Appl. Catal., B 61, 111 (2005).CrossRefGoogle Scholar
Yu, J., Yu, J.C., Ho, W., and Jiang, Z.: Effects of calcination temperature on the photocatalytic activity and photo-induced super-hydrophilicity of mesoporous TiO2 thin films. New J. Chem. 26, 607613 (2002).CrossRefGoogle Scholar
Sopyan, I., Watanabe, M., Murasawa, S., Hashimoto, K., and Fujishima, A.: An efficient TiO2 thin-film photocatalyst: Photocatalytic properties in gas-phase acetaldehyde degradation. J. Photochem. Photobiol., A 98, 7986 (1996).CrossRefGoogle Scholar
Sano, T., Negishi, N., Uchino, K., Tanaka, J., Matsuzawa, S., and Takeuchi, K.: Photocatalytic degradation of gaseous acetaldehyde on TiO2 with photodeposited metals and metal oxides. J. Photochem. Photobiol., A 160, 9398 (2003).CrossRefGoogle Scholar
Su, R., Bechstein, R., So, L., Vang, R.T., Sillassen, M., Esbjornsson, B., Palmqvist, A., and Besenbacher, F.: How the anatase-to-rutile ratio influences the photoreactivity of TiO2. J. Phys. Chem. C 115, 2428724292 (2011).CrossRefGoogle Scholar
Deak, P., Aradi, B., and Frauenheim, T.: Band lineup and charge carrier separation in mixed rutile-anatase systems. J. Phys. Chem. C 115, 34433446 (2011).CrossRefGoogle Scholar
Yu, Y., Yu, J.C., Yu, J-G., Kwok, Y-C., Che, Y-K., Zhao, J-C., Ding, L., Ge, W-K., and Wong, P-K.: Enhancement of photocatalytic activity of mesoporous TiO2 by using carbon nanotubes. Appl. Catal., A 289, 186196 (2005).CrossRefGoogle Scholar
Czecha, B., Oleszczuka, P., and Wiącek, A.: Advanced oxidation (H2O2 and/or UV) of functionalized carbon nanotubes (CNT–OH and CNT–COOH) and its influence on the stabilization of CNTs in water and tannic acid solution. Environ. Pollut. 200, 161167 (2015).CrossRefGoogle Scholar
Almkhelfe, H., Li, X., Thapa, P., Hohn, K.L., and Amama, P.B.: Carbon nanotube-supported catalysts prepared by a modified photo-Fenton process for Fischer–Tropsch synthesis. J. Catal. 361, 278289 (2018).CrossRefGoogle Scholar
Hahn, H., Logas, J., and Averback, R.S.: Sintering characteristics of nanocrystalline TiO2. J. Mater. Res. 5, 609614 (1990).CrossRefGoogle Scholar
Brunauer, S., Emmett, P.H., and Teller, E.: Adsorption of gases in multimolecular layers. J. Am. Chem. Soc. 60, 309319 (1938).CrossRefGoogle Scholar
Barrett, E.P., Joyner, L.G., and Halenda, P.P.: The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J. Am. Chem. Soc. 73, 373380 (1951).CrossRefGoogle Scholar
Supplementary material: File

Everhart et al. supplementary material

Everhart et al. supplementary material

Download Everhart et al. supplementary material(File)
File 125.7 KB