Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-26T10:14:58.048Z Has data issue: false hasContentIssue false

Hydrotalcites with an extended Al3+-substitution: Synthesis, simultaneous TG-DTA-MS study, and their CO2 adsorption behaviors

Published online by Cambridge University Press:  31 January 2011

Masamichi Tsuji
Affiliation:
Department of Chemistry, Research Center for Carbon Recycling & Utilization, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan
Gang Mao
Affiliation:
Department of Chemistry, Research Center for Carbon Recycling & Utilization, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan
Takashi Yoshida
Affiliation:
Department of Chemistry, Research Center for Carbon Recycling & Utilization, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan
Yutaka Tamaura
Affiliation:
Department of Chemistry, Research Center for Carbon Recycling & Utilization, Tokyo Institute of Technology, Ookayama, Meguro-ku, Tokyo 152, Japan
Get access

Abstract

A maximum Al3+-substitution has been demonstrated to be 45 mole% of (M + Al) in the brucite layer of hydrotalcites. The chemical composition of the highly substituted hydrotalcites can be typically represented by [M0.55Al0.45(OH)2] [(CO3)0.225 · 0.50H2O] where M = Mg, Ni, Zn, and Co. It showed the small lattice parameters of a0 3.05–2.98 A in the hexagonal lattice, which corroborates Al3+-substitution in the brucite layer. The simultaneous thermal analyses (TG and DTA) and mass spectrometry (MS) study have been performed. The highly Al3+-substituted hydrotalcites also showed quite different isotherms for the CO2 adsorption. These materials adsorbed CO2 gas by removing water within the interlayer and showed the selectivity for CO2 adsorption: Cu–Al ∼Zn—Al < Co—Al < Mg—Al < Ni—Al. The Mg—Al and Co—Al hydrotalcite-like compounds showed a doubled amount of CO2 by removing carbonate ions within the interlayer.

Type
Articles
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Tsuji, M. and Komarneni, S.J. Mater. Res. 4, 698 (1989).CrossRefGoogle Scholar
2Komarneni, S. and Tsuji, M.J. Am. Ceram. Soc. 72, 1668 (1989).CrossRefGoogle Scholar
3Tsuji, M.Komarneni, S. and Malla, P.J. Am. Ceram. Soc. 74, 254 (1991).CrossRefGoogle Scholar
4Gastuche, M.C.Brown, G. and Mortland, M.M.Clay Mineral. 7, 177 (1967).CrossRefGoogle Scholar
5Allmann, R.Acta Crystallogr. B24, 972 (1968).Google Scholar
6Bish, L. and Brindley, G. W.Am. Mineral. 62, 458 (1977).Google Scholar
7Miyata, S. and Hirose, T.Clays Clay Mineral. 26, 441 (1978).CrossRefGoogle Scholar
8Brindley, G. W. and Kikkawa, S.Am. Mineral. 64, 836 (1979).Google Scholar
9Miyata, S.Clays Clay Mineral. 28, 50 (1980).CrossRefGoogle Scholar
10Yamaoka, T.Abe, M. and Tsuji, M.Mater. Res. Bull. XXIV 1183 (1989).Google Scholar
11Thevenot, F.Szymanski, R. and Chaumette, P.Clays Clay Mineral. 37, 396 (1989).CrossRefGoogle Scholar
12Miyata, S.Clays Clay Mineral. 31 (4), 305 (1983).CrossRefGoogle Scholar
13Kikkawa, S. and Koizumi, M.Mater. Res. Bull. XVII 191 (1982).Google Scholar
14Idemura, S.Suzuki, E. and Ono, Y.Clays Clay Mineral. 37 (6), 553 (1989).CrossRefGoogle Scholar
15Brindley, G.W. and Kikkawa, S.Clays Clay Mineral. 28 (2), 87 (1980).CrossRefGoogle Scholar
16Sato, T.Wakabayashi, T. and Shimada, M.Ind. Eng. Chem. Prod. Res. Dev. 25, 89 (1986).CrossRefGoogle Scholar
17Miyata, S.Zeoraito 8 (4), 7 (1991) [in Japanese].Google Scholar
18Brown, G. and Gastuche, M. C.Clay Mineral. 7, 193 (1973).Google Scholar
19Taylor, H.F.W.Mineral Mag. 39 (304), 377 (1973).CrossRefGoogle Scholar
20Sissoko, I.Iyagba, E.T.Sahai, R. and Biloen, P.J. Solid State Chem. 60, 283 (1985).CrossRefGoogle Scholar
21Misra, C. and Perrotta, A. J.Clays Clay Mineral. 40, 1456 (1992).CrossRefGoogle Scholar
22Pausch, I.Lohse, H. H.Schurmann, K. and Allmann, R.Clays Clay Mineral. 34, 507 (1986).CrossRefGoogle Scholar
23Tsuji, M.Mao, G. and Tamaura, Y. Clays Clay Mineral, (in press).Google Scholar
24Barrer, R. M. and Klinowski, J.J. Chem. Soc. Faraday Trans. I 70, 2080 (1974).CrossRefGoogle Scholar
25Gaines, G. L. Jr. and Thomas, H. C.J. Chem. Phys. 21, 714 (1953).CrossRefGoogle Scholar
26Tsuji, M. and Komarneni, S.Sep. Sci. Technol. 26, 647 (1991).CrossRefGoogle Scholar
27Tsuji, M. and Komarneni, S.Sep. Sci. Technol. 27, 813 (1992).CrossRefGoogle Scholar
28Tsuji, M.Tabata, M. and Tamaura, Y.J. Am. Ceram. Soc. (in press).Google Scholar
29Shannon, R. D.Acta Crystallogr. A32, 751 (1976).Google Scholar
30Evans, J.V. and Whateley, T. L.Trans. Faraday Soc. 63, 2769 (1967).Google Scholar