Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T14:59:19.741Z Has data issue: false hasContentIssue false

Hydriding kinetics of ball-milled nanocrystalline MgH2 powders

Published online by Cambridge University Press:  31 January 2011

Á. Révész*
Affiliation:
Department of Materials Physics, Eötvös University, Budapest, H-1518, P.O.B. 32, Budapest, Hungary
D. Fátay
Affiliation:
Department of Materials Physics, Eötvös University, Budapest, H-1518, P.O.B. 32, Budapest, Hungary
T. Spassov
Affiliation:
Department of Chemistry, University of Sofia “St.Kl.Ohridski,” 1164 Sofia, Bulgaria
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The kinetics of hydride formation and decomposition described by semiempirical models generally do not involve particle and grain-size dependence. However, ball-milled nanocrystalline powders usually exhibit log-normal grain-size and particle-size distribution. Considering size dependence, a total reacted function for a multiparticle system has been developed. We show that the shape of the measured reaction fraction curves do not determine unambiguously the rate-controlling mechanism of hydrogen sorption, since the kinetics are strongly affected by the microstructure. With the application the convolutional multiple whole profile fitting procedure for nanocrystalline MgH2, the parameters, e.g., the median and variance of the log-normal grain-size distribution have been determined. Taking these values into account, the reaction constants corresponding to different sorption states are considerably modified compared with values obtained from classical single-particle models.

Type
Articles
Copyright
Copyright © Materials Research Society 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Sandrock, G.: A panoramic overview of hydrogen storage alloys from a gas reaction point of view. J. Alloys Compd. 293–295, 877 1999CrossRefGoogle Scholar
2E. David, E: An overview of advanced materials for hydrogen storage. J. Mater. Proc. Tech. 162–163, 169 2005CrossRefGoogle Scholar
3Bououdina, M., Grant, D.Walker, G.: Review on hydrogen absorbing materials—structure, microstructure, and thermodynamic properties. Int. J. Hydrogen Energy 31, 177 2006CrossRefGoogle Scholar
4Bowman, R.C.Fultz, B.: Hydrogen storage and other gas-phase applications. MRS Bull. 27, 688 2002CrossRefGoogle Scholar
5Buschow, K.H.J., Bouten, P.C.P.Miedema, A.R.: Hydrides formed from intermetallic compounds of 2 transition-metals—A special-class of ternary alloys. Rep. Prog. Phys. 45, 937 1982CrossRefGoogle Scholar
6Yermakov, A.Y., Mushnikov, N.V., Uimin, M.A., Gaviko, V.S., Tankeev, A.P., Skripov, A.V., Soloninin, A.V.Buzlukov, A.L.: Hydrogen reaction kinetics of Mg-based alloys synthesized by mechanical milling. J. Alloys Compd. 425, 367 2006CrossRefGoogle Scholar
7Varin, R.A., Czujko, T., Chiu, Ch.Wronski, Z.: Particle size effects on the desorption properties of nanostructured magnesium dihydride (MgH2) synthesized by controlled reactive mechanical milling (CRMM). J. Alloys Compd. 424, 356 2006CrossRefGoogle Scholar
8Imamura, H., Masanari, K., Kusuhara, M., Katsumoto, H., Sumi, T.Sakata, Y.: High hydrogen storage capacity of nanosized magnesium synthesized by high-energy ball milling. J. Alloys Compd. 386, 211 2005CrossRefGoogle Scholar
9Zaluski, L., Zaluska, A., Tessier, P., Ström-Olsen, J.O.Schulz, R.: Nanocrystalline hydrogen absorbing alloys. Mater Sci. Forum 225, 853 1996CrossRefGoogle Scholar
10Liang, G., Boily, S., Huot, J., Van Neste, A.Schulz, R.: Mechanical alloying and hydrogen absorption properties of the Mg–Ni system. J. Alloys Compd. 276, 302 1998Google Scholar
11Liang, G., Boily, S., Huot, J., Van Neste, A.Schulz, R.: Hydrogen absorption properties of a mechanically milled Mg– 50wt%LaNi5 composite. J. Alloys Compd. 268, 302 1998CrossRefGoogle Scholar
12Liang, G.: Synthesis and hydrogen storage properties of Mg-based alloys. J. Alloys Compd. 370, 123 2004CrossRefGoogle Scholar
13Oelerich, W., Klassen, T.Bormann, R.: Metal oxides as catalysts for improved hydrogen sorption in nanocrystalline Mg-based materials. J. Alloys Compd. 315, 237 2001CrossRefGoogle Scholar
14Barkhordarian, G., Klassen, T.Borman, R.: Fast hydrogen sorption kinetics of nanocrystalline Mg using Nb2O5 as catalyst. J. Alloys Compd. 49, 213 2003Google Scholar
15Barkhordarian, G., Klassen, T.Borman, R.: Effect of Nb2O5 content on hydrogen reaction kinetics of Mg. J. Alloys Compd. 364, 242 2004CrossRefGoogle Scholar
16Varin, R.A., Czujko, T.Wronski, Z.: Particle size, grain size and gamma-MgH2 effects on the desorption properties of nanocrystalline commercial magnesium hydride processed by controlled mechanical milling. Nanotechnology 17, 3856 2006CrossRefGoogle Scholar
17Révész, Á., Fátay, D., Zander, D.Spassov, T.: Influence of particle size on the hydrogen sorption properties of ball-milled MgH2 with Nb2O5 as catalyst. J. Metast. Nanocr. Mater. 24–25, 447 2005Google Scholar
18Fátay, D., Révész, Á.Spassov, T.: Particle size and catalytic effect on the dehydriding of MgH2. J. Alloys Compd. 399, 237 2005CrossRefGoogle Scholar
19Asakuma, Y., Miyauchi, S., Yamamoto, T., Aoki, H.Miura, T.: Numerical analysis of absorbing and desorbing mechanism for the metal hydride by homogenization method. Int. J. Hydrogen Energy 28, 529 2003CrossRefGoogle Scholar
20Chou, K.C., Li, Q., Lin, Q., Jiang, L.J.Xu, K.D.: Kinetics of absorption and desorption of hydrogen in alloy powder. Int. J. Hydrogen Energy 30, 301 2005CrossRefGoogle Scholar
21Mintz, M.H.Zeiri, Y.: Hydriding kinetics of powders. J. Alloys Compd. 216, 159 1994CrossRefGoogle Scholar
22Barkhordarian, G., Klassen, T.Borman, R.: Kinetic investigation of the effect of milling time on the hydrogen sorption reaction of magnesium catalysed with different Nb2O5 contents. J. Alloys Compd. 407, 249 2006CrossRefGoogle Scholar
23Schweppe, F., Martin, M.Fromm, E.: Model on hydride formation describing surface control, diffusion control and transition regions. J. Alloys Compd. 261, 254 1997CrossRefGoogle Scholar
24Bloch, L.: The kinetics of a moving metal hydride layer. J. Alloys Compd. 312, 135 2000CrossRefGoogle Scholar
25Gabis, I.E., Voit, A.P., Evard, E.A., Zaika, Y.V., Chernov, I.A.Yartys, V.A.: Kinetics of hydrogen desorption from the powders of metal hydrides. J. Alloys Compd. 404–406, 312 2005CrossRefGoogle Scholar
26Jacobs, P.W.M.Tompkins, F.C.: Classification and theory of solid reactions in Chemistry of the Solid State, edited by W.E. Garner Butterworth London 1955 184–212Google Scholar
27Avrami, M.: Kinetics of phase change II. J. Chem. Phys. 8, 212 1940CrossRefGoogle Scholar
28Krill, C.E.Birringer, R.: Estimating grain-size distributions in nanocrystalline materials from x-ray diffraction profile analysis. Philos. Mag. 77, 621 1998CrossRefGoogle Scholar
29Williamson, G.K.Hall, W.H.: X-ray line broadening from filed aluminium and wolfram. Acta Metall. 1, 22 1953CrossRefGoogle Scholar
30Warren, B.E.Averbach, B.L.: The effect of cold-work distortion on x-ray patterns J. Appl. Phys. 21, 55 1950CrossRefGoogle Scholar
31van Berkum, J.G.M., Vermuelen, A.C., Delhez, R., de Keijser, T.H.Mittemeijer, E.J.: Applicabilities of the Warren-Averbach analysis and an alternative analysis for separation of size and strain broadening. J. Appl. Crystallogr. 27, 345 1994CrossRefGoogle Scholar
32Ungár, T.Borbély, A.: The effect of dislocation contrast on x-ray line broadening: A new approach to line profile analysis. Appl. Phys. Lett. 69, 3173 1996CrossRefGoogle Scholar
33Ribárik, G., Gubicza, J.Ungár, T.: Correlation between strength and microstructure of ball-milled Al–Mg alloys determined by x-ray diffraction. Mater. Sci. Eng., A 387–389, 343 2004CrossRefGoogle Scholar
34Ungár, T., Dragomir, I., Révész, Á.Borbély, A.: The contrast factors of dislocations in cubic crystals: The dislocation model of strain anisotropy in practice. J. Appl. Crystallogr. 32, 992 1999CrossRefGoogle Scholar
35Ungár, T.Tichy, G.: The effect of dislocation contrast on x-ray line profiles in untextured polycrystals. Phys. Status. Solidi A 171, 425 19993.0.CO;2-W>CrossRefGoogle Scholar
36Ungár, T., Gubicza, J., Ribárik, G.Borbély, A.: Crystallite size distribution and dislocation structure determined by diffraction profile analysis: Principles and practical application to cubic and hexagonal crystals. J. Appl. Crystallogr. 34, 298 2001CrossRefGoogle Scholar
37JCPDS No. 12-0697. International Center for Diffraction Data Newton Square PA 1960Google Scholar
38JCPDS No. 35-1184. International Center for Diffraction Data Newton Square PA 1980Google Scholar
39Fátay, D., Spassov, T., Delchev, P., Ribárik, G.Révész, Á.: Microstructural development in nanocrystalline MgH2 during H-absorption/desorption cycling. Int. J. Hydrogen Energy, doi: 10.1016/j.ijhydene.2006.12.018,2007CrossRefGoogle Scholar