Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-24T09:22:19.088Z Has data issue: false hasContentIssue false

High-temperature deformation processing maps for a NiTiCu shape memory alloy

Published online by Cambridge University Press:  13 September 2011

Vyasa V. Shastry
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
Bikas Maji
Affiliation:
Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Madangopal Krishnan
Affiliation:
Materials Science Division, Bhabha Atomic Research Centre, Mumbai 400085, India
Upadrasta Ramamurty*
Affiliation:
Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

The properties of widely used Ni–Ti-based shape memory alloys (SMAs) are highly sensitive to the underlying microstructure. Hence, controlling the evolution of microstructure during high-temperature deformation becomes important. In this article, the “processing maps” approach is utilized to identify the combination of temperature and strain rate for thermomechanical processing of a Ni42Ti50Cu8 SMA. Uniaxial compression experiments were conducted in the temperature range of 800–1050 °C and at strain rate range of 10−3 and 102 s−1. Two-dimensional power dissipation efficiency and instability maps have been generated and various deformation mechanisms, which operate in different temperature and strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results show that the safe window for industrial processing of this alloy is in the range of 800–850 °C and at 0.1 s−1, which leads to grain refinement and strain-free grains. Regions of the instability were identified, which result in strained microstructure, which in turn can affect the performance of the SMA.

Type
Articles
Copyright
Copyright © Materials Research Society 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Otsuka, K. and Wayman, C.M.: Shape Memory Materials (Cambridge University Press, MA, 1998).Google Scholar
2.Otsuka, K. and Ren, X.: Physical metallurgy of Ti Ni based shape memory alloys. Prog. Mater. Sci. 50, 511678 (2005).CrossRefGoogle Scholar
3.Duerig, T.W., Pelton, A.R., and Stockel, D.: An overview of nitinol medical applications. Mater. Sci. Eng., A 273275, 149 (1999).CrossRefGoogle Scholar
4.Pelton, A.R., Stockel, D., and Duerig, T.W.: Medical uses of nitinol. Mater. Sci. Forum 327328, 63 (2000).CrossRefGoogle Scholar
5.Cui, Z.D., Man, H.C., Cheng, F.T., and Yue, T.M.: Cavitation erosion–corrosion characteristics of laser surface modified NiTi shape memory alloy. Surf. Coat. Tech. 162, 147 (2003).CrossRefGoogle Scholar
6.Rocher, P., El Medawar, L., Hornez, J-C., Traisnel, M., Breme, J., and Hildebrand, H.F.: Biocorrosion and cytocompatibility of NiTi shape memory alloys. Scr. Mater. 50, 255 (2004).CrossRefGoogle Scholar
7.Jean, R-D. and Tsai, J-C.: Effect of hot working on the martensitic transformation of Ni-Ti alloys. Scr. Metall. Mater. 30, 1027 (1994).CrossRefGoogle Scholar
8.Karaman, I., Ersin Karaca, H., Luo, Z.P., and Maier, H.J.: The effect of severe marforming on shape memory characteristics of a Ti rich NiTi alloy processed using equal channel angular extrusion. Metall. Mater. Trans. A 34, 2527 (2003).CrossRefGoogle Scholar
9.Kurita, T., Matsumoto, H., and Abe, H.: Transformation behavior in rolled NiTi. J. Alloy. Comp. 381, 158 (2004).CrossRefGoogle Scholar
10.Favier, D., Liu, Y., Orgeas, L., Sandel, A., Debove, L., and Comte-Gaz, P.: Influence of thermomechanical processing on the superelastic properties of a Ni-rich nitinol shape memory alloy. Mater. Sci. Eng., A 429, 130 (2006).CrossRefGoogle Scholar
11.Popov, N.N., Prokoshkin, S.D., Sidorkin, M.Yu., Sysoeva, T.I., Borovkov, D.V., Aushev, A.A., Kostylev, I.V., and Gusarov, A.E.: Effect of thermomechanical treatment on the structure and functional properties of a 45Ti-45Ni-10Nb alloy. Russ. Metall. 1, 59 (2007).CrossRefGoogle Scholar
12.Kockar, B., Karaman, I., Kulkarni, A., Chumlyakov, Y., and Kireeva, I.V.: Effect of severe ausforming via equal channel angular extrusion on the shape memory response of a NiTi alloy. J. Nucl. Mater. 361, 298 (2007).CrossRefGoogle Scholar
13.Sadrnezhaad, S.K. and Mirabolghasemi, S.H.: Optimum temperature for recovery and recrystallization of 52Ni48Ti shape memory alloy. Mater. Des. 28, 1945 (2007).CrossRefGoogle Scholar
14.Paula, A.S., Mahesh, K.K., and Fernandes, F.M.B.: Evolution of phase transformations after multiple steps of marforming in Ti- rich Ni-Ti SMA. Eur. Phys. J. Spec. Top. 158, 45 (2008).CrossRefGoogle Scholar
15.Paula, A.S., Mahesh, K.K., Santos, C.M.L.D., Fernandes, F.M.B. and Viana, C.S.D.C.: Thermomechanical behavior of Ti-rich NiTi shape memory alloys. Mater. Sci. Eng., A 481482, 146 (2008).CrossRefGoogle Scholar
16.Lin, H.C. and Wu, S.K.: Effects of hot rolling on the martensitic transformation of an equiatomic Ti-Ni alloy. Mater. Sci. Eng., A 158, 87 (1992).CrossRefGoogle Scholar
17.Suzuki, H.G., Takakura, E., and Eylon, D.: Hot strength and hot ductility of titanium alloys—a challenge for continuous casting process. Mater. Sci. Eng., A 263, 230 (1999).CrossRefGoogle Scholar
18.Frick, C.P., Ortega, A.M., Tyber, J., Maksound, A.El.M., Maier, H.J., Liu, Y., and Gall, K.: Thermal processing of polycrystalline NiTi shape memory alloys. Mater. Sci. Eng., A 405, 34 (2005).CrossRefGoogle Scholar
19.Dehghani, K. and Khamei, A.A.: Hot deformation behavior of 60Nitinol (Ni60 wt%–Ti40 wt%) alloy: Experimental and computational studies. Mater. Sci. Eng., A 527, 684 (2010).CrossRefGoogle Scholar
20.Khamei, A.A. and Dehghani, K.: Modeling the hot-deformation behavior of Ni60 wt%–Ti40 wt% intermetallic alloy. J. Alloy. Comp. 490, 377 (2010).CrossRefGoogle Scholar
21.Morakabati, M., Kheirandish, Sh., Aboutalebi, M.Karimi Taheri, A., and Abbasi, S.M.: The effect of Cu addition on the hot deformation behavior of NiTi shape memory alloys. J. Alloy. Comp. 499, 57 (2010).CrossRefGoogle Scholar
22.Melton, K.N. and Mercier, O.: Deformation behaviour of NiTi alloys. Metall. Trans. A 9, 1487 (1978).CrossRefGoogle Scholar
23.Nam, T.H., Saburi, T., Kawamura, Y., and Shimizu, K.: Shape memory characteristics associated with the B2↔B19 and B19↔B19’ transformations in a Ti-40Ni-10 Cu (at.%) alloy. Mater. Trans. JIM 31, 262 (1990).CrossRefGoogle Scholar
24.Nam, T.H., Saburi, T., and Shimizu, K.: Cu-content dependence of shape memory characteristics in Ti-Ni-Cu alloys. Mater. Trans. JIM 31, 959 (1990).CrossRefGoogle Scholar
25.Nam, T.H., Saburi, T., Nakata, Y., and Shimizu, K.: Shape memory characteristics and lattice deformation in Ti-Ni-Cu alloys. Mater. Trans. JIM 31, 1050 (1990).CrossRefGoogle Scholar
26.Nam, T.H., Saburi, T., and Shimizu, K.: Effect of thermo-mechanical treatment on shape memory characteristics in a Ti-40Ni-10Cu (at%) alloy. Mater. Trans. JIM 32, 814 (1991).CrossRefGoogle Scholar
27.Lo, Y.C., Wu, S.K., and Horng, H.E.: A study of B2↔B19↔B19′ two-stage martensitic transformation in a Ti50Ni40Cu10 alloy. Acta Metall. Mater. 41, 747 (1993).CrossRefGoogle Scholar
28.Tang, W., Sandstrom, R., Wei, Z.G., and Miyazak, S.: Experimental investigation and thermodynamic calculation of the Ti-Ni-Cu shape memory alloys. Metall. Mater. Trans. A 31, 2423 (2000).CrossRefGoogle Scholar
29.Gil, F.J., Solano, E., Penal, J., Engel, E., Mendoza, A., and Planell, J.A.: Microstructural, mechanical and cytotoxicity evaluation of different NiTi and NiTiCu shape memory alloys. J. Mater. Sci.- Mater. Med. 15, 1181 (2004).CrossRefGoogle Scholar
30.Colombo, S., Cannizzo, C., Gariboldi, F., and Airoldi, G.: Electrical resistance and deformation during the stress-assisted two-way memory effect in Ni45Ti50Cu5 alloy. J. Alloy. Comp. 422, 313 (2006).CrossRefGoogle Scholar
31.Grossmann, Ch., Frenzel, J., Samphath, V., Depka, T., and Eggeler, G.: Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metall. Mater. Trans. A 40, 2530 (2009).CrossRefGoogle Scholar
32.Sen, I. and Ramamurty, U.: High-temperature (1023 K to 1273 K [750 °C to 1000 °C]) plastic deformation behavior of B-modified Ti-6Al-4V alloys: Temperature and strain rate effects. Metall. Mater. Trans. A 41, 2959 (2010).CrossRefGoogle Scholar
33.Goetz, R.L. and Semiatin, S.L.: The adiabatic correction factor for the deformation heating during the uniaxial compression test. J. Mater. Eng. Perform. 10, 710 (2001).CrossRefGoogle Scholar
34.Prasad, Y.V.R.K. and Sasidhara, S.: Hot Working Guide (ASM International, Materials Park, OH, 1997).Google Scholar
35.Charpentier, P.L., Store, B.C., Earnest, S.C., and Thomas, J.F. Jr.: Characterization and modeling of the high temperature flow behavior of aluminum alloy 2024. Metall. Trans. A 17, 2227 (1986).CrossRefGoogle Scholar
36.Oh, S.I., Semiatin, S.L., and Jonas, J.J.: An analysis of the isothermal hot compression test. Metall. Trans. A 23, 963 (1992).CrossRefGoogle Scholar
37.Mukherjee, A.K.: High temperature creep mechanism of TiNi. J. Appl. Phys. 39, 2201 (1968).CrossRefGoogle Scholar
38.Kato, H., Yamamoto, T., Hashimoto, S., and Miura, S.: High-temperature plasticity of the β-phase in nearly-equiatomic nickel-titanium alloys. Mater. Trans. JIM 40, 343 (1999).CrossRefGoogle Scholar
39.Prasad, Y.V.R.K.: Recent advances in the science of mechanical processing. Indian J. Technol. 28, 435 (1990).Google Scholar
40.Sen, I., Kottada, R.S., and Ramamurty, U.: High temperature deformation processing maps for boron modified Ti–6Al–4V alloys. Mater. Sci. Eng., A 527, 6157 (2010).CrossRefGoogle Scholar
41.Lehockey, E.M., Lin, Y-P., and Lepik, O.E.: Mapping residual plastic strain in materials using electron backscatter diffraction, in Electron Backscatter Diffraction in Materials Science, edited by Schwartz, A.J., Kumar, M., and Adams, B.L. (Kluwer Academic/Plenum Publishers, New York, 2000), pp 247264.CrossRefGoogle Scholar
42.Randle, V. and Engler, O.: Introduction to Texture Analysis—Macrotexture, Microtexture and Orientation Mapping (CRC Press, Boca Raton, FL, 2000), pp 245261.CrossRefGoogle Scholar