Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T13:23:32.754Z Has data issue: false hasContentIssue false

Highly responsive and selective formaldehyde sensor based on La3+-doped barium stannate microtubes prepared by electrospinning

Published online by Cambridge University Press:  12 April 2019

Anish Bhattacharya
Affiliation:
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 240003, People’s Republic of China
Yufang Jiang
Affiliation:
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 240003, People’s Republic of China
Qi Gao
Affiliation:
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 240003, People’s Republic of China
Xiangfeng Chu*
Affiliation:
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 240003, People’s Republic of China
Yongping Dong
Affiliation:
School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma’anshan, Anhui 240003, People’s Republic of China
Shiming Liang*
Affiliation:
School of Materials Science and Engineering, Linyi University, Linyi, Shandong 276005, People’s Republic of China
Amit K. Chakraborty
Affiliation:
Department of Physics and Centre of Excellence in Advanced Materials, National Institute of Technology, Durgapur, WB 713209, India
*
a)Address all correspondence to these authors. e-mail: [email protected] or [email protected]
Get access

Abstract

La3+-doped BaSnO3 microtubes (La3+–BaSnO3) have been synthesized by electrospinning method, and the influence of La3+ content on the sensing properties of BaSnO3 for detection of formaldehyde vapor has been investigated. The as-prepared materials have been characterized using XRD, SEM, DSC, XPS, and UV-Vis. The La3+–BaSnO3 sample doped with 4 wt% La exhibited a response as high as 220 to formaldehyde vapor (1000 ppm concentration) along with a very low detection limit of 0.1 ppm at 270 °C, whereas at 140 °C, it exhibited a response of 80 and detection limit of 1 ppm. In addition, the sensor showed excellent selectivity of 57 to formaldehyde at 140 °C when compared with other vapors. Further, the sensor also showed good repeatability and stability over a long period of time suggesting its strong potential as a commercial formaldehyde sensor.

Type
Article
Copyright
Copyright © Materials Research Society 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Zhang, Y., Luo, L., Han, C., Lv, H., Chen, D., Shen, G., Wu, K., Pan, S., Ye, F., Zhang, Y., Luo, L., Han, C., Lv, H., Chen, D., Shen, G., Wu, K., Pan, S., and Ye, F.: Design, synthesis, and biological activity of tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives as anti-inflammatory agents. Molecules 22, 1960 (2017).CrossRefGoogle ScholarPubMed
Zhang, F., Qu, G., Mohammadi, E., Mei, J., and Diao, Y.: Solution-processed nanoporous organic semiconductor thin films: Toward health and environmental monitoring of volatile markers. Adv. Funct. Mater. 27, 1701117 (2017).CrossRefGoogle Scholar
Xu, X-Y. and Yan, B.: Eu(III)-functionalized ZnO@MOF heterostructures: Integration of pre-concentration and efficient charge transfer for the fabrication of a ppb-level sensing platform for volatile aldehyde gases in vehicles. J. Mater. Chem. A 5, 2215 (2017).CrossRefGoogle Scholar
Zhang, Y., Zhang, J., Liu, Q., Zhang, Y., Zhang, J., and Liu, Q.: Gas sensors based on molecular imprinting technology. Sensors 17, 1567 (2017).CrossRefGoogle ScholarPubMed
Zilberstein, G., Zilberstein, R., Zilberstein, S., Maor, U., Baskin, E., Zhang, S., and Righetti, P.G.: A miniaturized sensor for detection of formaldehyde fumes. Electrophoresis 38, 2168 (2017).CrossRefGoogle ScholarPubMed
Wang, X., Li, H., Ni, M., Wang, L., Liu, L., Wang, H., and Guo, X.: Excellent formaldehyde gas-sensing properties of ruptured Nd-doped In2O3 porous nanotubes. J. Electron. Mater. 46, 363 (2017).CrossRefGoogle Scholar
Wang, H., Chi, Y., Gao, X., Lv, S., Chu, X., Wang, C., Zhou, L., and Yang, X.: Amperometric formaldehyde sensor based on a Pd nanocrystal modified C/Co2P electrode. J. Chem. 2017, 1 (2017).Google Scholar
Pötzelberger, I., Mardare, C.C., Uiberlacker, L.M., Hild, S., Mardare, A.I., and Hassel, A.W.: Electrocatalysis on copper–palladium alloys for amperometric formaldehyde sensing. RSC Adv. 7, 6031 (2017).CrossRefGoogle Scholar
Barsan, N., Koziej, D., and Weimar, U.: Metal oxide-based gas sensor research: How to? Sens. Actuators, B 121, 18 (2007).CrossRefGoogle Scholar
Dey, A.: Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng., B 229, 206 (2018).CrossRefGoogle Scholar
Chu, X., Dai, P., Liang, S., Bhattacharya, A., Dong, Y., and Epifani, M.: The acetone sensing properties of ZnFe2O4-graphene quantum dots (GQDs) nanocomposites at room temperature. Phys. E 106, 326 (2018).CrossRefGoogle Scholar
Chu, X., Wang, J., Bai, L., Dong, Y., and Sun, W.: The gas sensing properties of NiGa2O4 nanofibers prepared by electrospinning method. Mater. Sci. Eng., B 228, 45 (2018).CrossRefGoogle Scholar
Chu, X., Wang, J., Bai, L., Dong, Y., Sun, W., and Zhang, W.: Trimethylamine and ethanol sensing properties of NiGa2O4 nano-materials prepared by co-precipitation method. Sens. Actuators, B 255, 2058 (2018).CrossRefGoogle Scholar
Ranjan, P., Tiwary, P., Chakraborty, A.K., and Ajay, R.M.: Graphene oxide based free-standing films for humidity and hydrogen peroxide sensing. J. Mater. Sci.: Mater. Electron. 29, 15946 (2018).Google Scholar
Chatterjee, S.G., Samanta, S., Dey, D., Chatterjee, S., Santra, S., Guha, P.K., and Chakraborty, A.K.: Near room temperature sensing of nitric oxide using SnO2/Ni-decorated natural cellulosic graphene nanohybrid film. J. Mater. Sci.: Mater. Electron. 29, 20162 (2018).Google Scholar
Gupta Chatterjee, S., Chatterjee, S., Ray, A.K., and Chakraborty, A.K.: Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sens. Actuators, B 221, 1170 (2015).CrossRefGoogle Scholar
Tiwary, P., Mahapatra, R., and Chakraborty, A.K.: ZnO nanobristles prepared by one-step thermal decomposition of zinc nitrate as ultra-high response ethanol sensor at room temperature. J. Mater. Sci.: Mater. Electron., 1 (2019).Google Scholar
Chakraborty, I., Chakrabarty, N., Senapati, A., and Chakraborty, A.K.: CuO@NiO/Polyaniline/MWCNT nanocomposite as high-performance electrode for supercapacitor. J. Phys. Chem. C 122, 27180 (2018).CrossRefGoogle Scholar
Augustyn, V.: Tuning the interlayer of transition metal oxides for electrochemical energy storage. J. Mater. Res. 32, 2 (2017).CrossRefGoogle Scholar
Wang, G., Leng, X., Han, S., Shao, Y., Wei, S., Liu, Y., Lian, J., and Jiang, Q.: How to improve the stability and rate performance of lithium-ion batteries with transition metal oxide anodes. J. Mater. Res. 32, 16 (2017).CrossRefGoogle Scholar
Pearson, A.J.: Structure formation and evolution in semiconductor films for perovskite and organic photovoltaics. J. Mater. Res. 32, 1798 (2017).CrossRefGoogle Scholar
Ostrick, B., Fleischer, M., Lampe, U., and Meixner, H.: Preparation of stoichiometric barium stannate thin films: Hall measurements and gas sensitivities. Sens. Actuators, B 44, 601 (1997).CrossRefGoogle Scholar
Lampe, U., Gerblinger, J., and Meixner, H.: Nitrogen oxide sensors based on thin films of BaSnO3. Sens. Actuators, B 26, 97 (1995).CrossRefGoogle Scholar
Lampe, U., Gerblinger, J., and Meixner, H.: Carbon-monoxide sensors based on thin films of BaSnO3. Sens. Actuators, B 25, 657 (1995).CrossRefGoogle Scholar
Reddy, C.V.G., Manorama, S.V., Rao, V.J., Lobo, A., and Kulkarni, S.K.: Noble metal additive modulation of gas sensitivity of BaSnO3, explained by a work function based model. Thin Solid Films 348, 261 (1999).CrossRefGoogle Scholar
Lu, W.Z., Jiang, S.L., Zhou, D.X., and Gong, S.P.: Structural and electrical properties of Ba(Sn,Sb)O3 electroceramics materials. Sens. Actuators, A 80, 35 (2000).CrossRefGoogle Scholar
Tao, S., Gao, F., Liu, X., and Sørensen, O.T.: Ethanol-sensing characteristics of barium stannate prepared by chemical precipitation. Sens. Actuators, B 71, 223 (2000).CrossRefGoogle Scholar
Ochoa, Y.H., Schipani, F., Aldao, C.M., Rodríguez-Páez, J.E., and Ponce, M.A.: Modification of sensitivity of BaSnO3 sensor due to parameters of synthesis and formation of the device. J. Mater. Res. 30, 3423 (2015).CrossRefGoogle Scholar
Zhang, W., Tang, J., and Ye, J.: Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M = Ca, Sr, and Ba) photocatalysts. J. Mater. Res. 22, 1859 (2007).CrossRefGoogle Scholar
Buscaglia, M.T., Leoni, M., Viviani, M., and Buscaglia, V.: Synthesis and characterization of BaSn(OH)6 and BaSnO3 acicular particles. J. Mater. Res. 18, 560 (2003).CrossRefGoogle Scholar
Karakas, H.: Electrospinning of nanofibers and their applications. MDT “Electrospinning” 3, 1 (2014).Google Scholar
Patil, J.V., Mali, S.S., Kamble, A.S., Hong, C.K., Kim, J.H., and Patil, P.S.: Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Appl. Surf. Sci. 423, 641 (2017).CrossRefGoogle Scholar
Bhardwaj, N. and Kundu, S.C.: Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325 (2010).CrossRefGoogle ScholarPubMed
Kannan, B., Cha, H., and Hosie, I.C.: Nano-Size Polym (Springer International Publishing, Cham, 2016); p. 309.CrossRefGoogle Scholar
Huang, Z-M., Zhang, Y-Z., Kotaki, M., and Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223 (2003).CrossRefGoogle Scholar
Chakrabarty, N. and Chakraborty, A.K.: Controlling the electrochemical performance of β-Ni(OH)2/carbon nanotube hybrid electrodes for supercapacitor applications by La doping: A systematic investigation. Electrochim. Acta 297, 173 (2019).CrossRefGoogle Scholar
Ochoa Muñoz, Y.H., Ponce, M., and Rodríguez Páez, J.E.: Comparative study of two wet chemical methods of BaSnO3 synthesis: Mechanism of formation of mixed oxide. Powder Technol. 279, 86 (2015).CrossRefGoogle Scholar
Lu, W. and Schmidt, H.: Lyothermal synthesis of nanocrystalline BaSnO3 powders. Ceram. Int. 34, 645 (2008).CrossRefGoogle Scholar
Chu, X.: Dilute CH3SH-sensing characteristics of BaSnO3 thick film sensor. Mater. Sci. Eng., B 106, 305 (2004).CrossRefGoogle Scholar
Watson, S.M.D., Coleman, K.S., and Chakraborty, A.K.: A new route to the production and nanoscale patterning of highly smooth, ultrathin zirconium oxide films. ACS Nano 2, 643 (2008).CrossRefGoogle ScholarPubMed
Butenko, Y.V., Krishnamurthy, S., Chakraborty, A.K., Kuznetsov, V.L., Dhanak, V.R., Hunt, M.R.C., and Šiller, L.: Photoemission study of onionlike carbons produced by annealing nanodiamonds. Phys. Rev. B 71, 075420 (2005).CrossRefGoogle Scholar
Nguyen, T.P., Ip, J., Jolinat, P., and Destruel, P.: XPS and sputtering study of the Alq3/electrode interfaces in organic light emitting diodes. Appl. Surf. Sci. 172, 75 (2001).CrossRefGoogle Scholar
Gao, L., Ren, F., Cheng, Z., Zhang, Y., Xiang, Q., and Xu, J.: Porous corundum-type In2O3 nanoflowers: Controllable synthesis, enhanced ethanol-sensing properties and response mechanism. CrystEngComm 17, 3268 (2015).CrossRefGoogle Scholar
Wang, C., Cui, X., Liu, J., Zhou, X., Cheng, X., Sun, P., Hu, X., Li, X., Zheng, J., and Lu, G.: Design of superior ethanol gas sensor based on Al-doped NiO nanorod-flowers. ACS Sens. 1, 131 (2016).CrossRefGoogle Scholar
Sunding, M.F., Hadidi, K., Diplas, S., Løvvik, O.M., Norby, T.E., and Gunnæs, A.E.: XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. J. Electron Spectrosc. Relat. Phenom. 184, 399 (2011).CrossRefGoogle Scholar
Li, Y.X., Guo, Z., Su, Y., Jin, X.B., Tang, X.H., Huang, J.R., Huang, X.J., Li, M.Q., and Liu, J.H.: Hierarchical morphology-dependent gas-sensing performances of three-dimensional SnO2 Nanostructures. ACS Sens. 2, 102 (2017).CrossRefGoogle ScholarPubMed
Zhang, Y., Zhang, J., Zhao, J., Zhu, Z., and Liu, Q.: Ag–LaFeO3 fibers, spheres, and cages for ultrasensitive detection of formaldehyde at low operating temperatures. Phys. Chem. Chem. Phys. 19, 6973 (2017).CrossRefGoogle ScholarPubMed
Mishra, R.K., Murali, G., Kim, T-H., Kim, J.H., Lim, Y.J., Kim, B-S., Sahay, P.P., and Lee, S.H.: Nanocube In2O3@RGO heterostructure based gas sensor for acetone and formaldehyde detection. RSC Adv. 7, 38714 (2017).CrossRefGoogle Scholar
Chen, Z-W., Hong, Y-Y., Lin, Z-D., Liu, L-M., and Zhang, X-W.: Enhanced formaldehyde gas sensing properties of ZnO nanosheets modified with graphene. Electron. Mater. Lett. 13, 270 (2017).CrossRefGoogle Scholar
Wu, X.H., De Wang, Y., Liu, H.L., Li, Y.F., and Zhou, Z.L.: Preparation and gas-sensing properties of perovskite-type MSnO3 (M = Zn, Cd, Ni). Mater. Lett. 56, 732 (2002).CrossRefGoogle Scholar
Gao, Q., Ao, S., Chen, H., Zou, X., Wei, C., and Li, G-D.: Enhanced formaldehyde sensing properties of IrO2-loaded porous foam-like Ga1.4In0.6O3 nanofibers with ultrathin pore walls. J. Alloys Compd. 732, 856 (2018).CrossRefGoogle Scholar
Wang, S., Cao, J., Cui, W., Fan, L., Li, X., and Li, D.: Oxygen vacancies and grain boundaries potential barriers modulation facilitated formaldehyde gas sensing performances for In2O3 hierarchical architectures. Sens. Actuators, B Chem. 255, 159 (2018).CrossRefGoogle Scholar
Chi, C-Y., Chen, H-I., Chen, W-C., Chang, C-H., and Liu, W-C.: Formaldehyde sensing characteristics of an aluminum-doped zinc oxide (AZO) thin-film-based sensor. Sens. Actuators, B Chem. 255, 3017 (2018).CrossRefGoogle Scholar
Sun, J., Bai, S., Tian, Y., Zhao, Y., Han, N., Luo, R., Li, D., and Chen, A.: Hybridization of ZnSnO3 and rGO for improvement of formaldehyde sensing properties. Sens. Actuators, B Chem. 257, 29 (2018).CrossRefGoogle Scholar
Zhang, S., Song, P., Yang, Z., and Wang, Q.: Facile hydrothermal synthesis of mesoporous In2O3 nanoparticles with superior formaldehyde-sensing properties. Phys. E 97, 38 (2018).CrossRefGoogle Scholar
Bai, S., Tian, Y., Zhao, Y., Fu, H., Tang, P., Luo, R., Li, D., Chen, A., and Liu, C.C.: Construction of NiO@ZnSnO3 hierarchical microspheres decorated with NiO nanosheets for formaldehyde sensing. Sens. Actuators, B 259, 908 (2018).CrossRefGoogle Scholar
Ge, W., Chang, Y., Natarajan, V., Feng, Z., Zhan, J., and Ma, X.: In2O3–SnO2 hybrid porous nanostructures delivering enhanced formaldehyde sensing performance. J. Alloys Compd. 746, 36 (2018).CrossRefGoogle Scholar
Wang, T., Liu, B., Li, Q., and Wang, S.: Controllable construction of Cr2O3–ZnO hierarchical heterostructures and their formaldehyde gas sensing properties. Mater. Lett. 221, 260 (2018).CrossRefGoogle Scholar
Hussain, S., Aslam, N., Yang, X., Javeed, M. S., Xu, Z., Wang, M., Liu, G., and Qiao, G.: Unique polyhedron CeO2 nanostructures for superior formaldehyde gas-sensing performances. Ceram. Int. 44(16), 19624 (2018).CrossRefGoogle Scholar
Liu, D., Pan, J., Tang, J., Liu, W., Bai, S., and Luo, R.: Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J. Phys. Chem. Solids 124, 36 (2018).CrossRefGoogle Scholar
Rong, X., Chen, D., Qu, G., Li, T., Zhang, R., and Sun, J.: Effects of graphene on the microstructures of SnO2@rGO nanocomposites and their formaldehyde-sensing performance. Sens. Actuators, B Chem. 269, 223 (2018).CrossRefGoogle Scholar
Yu, H., Li, J., Tian, Y., and Li, Z.: Environmentally friendly recycling of SnO2/Sn3O4 from tin anode slime for application in formaldehyde sensing material by Ag/Ag2O modification. J. Alloys Compd. 765, 624 (2018).CrossRefGoogle Scholar
Zhang, D., Jiang, C., and Wu, J.: Layer-by-layer assembled In2O3 nanocubes/flower-like MoS2 nanofilm for room temperature formaldehyde sensing. Sens. Actuators, B Chem. 273, 176 (2018).CrossRefGoogle Scholar