Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-28T16:29:06.514Z Has data issue: false hasContentIssue false

Heteroepitaxial growth and structural analysis of epitaxial α–Fe2O3(1010) on TiO2(001)

Published online by Cambridge University Press:  03 March 2011

Joshua R. Williams
Affiliation:
Fundamental Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352
Chongmin Wang
Affiliation:
Fundamental Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352
Scott A. Chambers*
Affiliation:
Fundamental Science Division, Pacific Northwest National Laboratory, Richland, Washington 99352
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

We grew epitaxial α–Fe2O3(1010) on TiO2(001) rutile by oxygen plasma-assisted molecular-beam epitaxy. High-resolution transmission electron microscopy (HRTEM), reflection high-energy electron diffraction (RHEED), and x-ray diffraction pole figures confirm that the film is composed of four different in-plane orientations rotated by 90° relative to one another. For a given Fe2O3 unit cell, the lattice mismatch along the parallel [0001]Fe2O3 and [100]TiO2 directions is nominally +67%. However, due to a 3-fold repetition of the slightly distorted square symmetry of anion positions within the Fe2O3 unit cell, there is a coincidental anion alignment along the [0001]Fe2O3 and [100]TiO2 directions, which results in an effective lattice mismatch of only −0.02% along this direction. The lattice mismatch is nearly 10% in the orthogonal [1120]Fe2O3 and [100]TiO2 directions. The film is highly ordered and well registered to the substrate despite a large lattice mismatch in one direction. The film grows in registry with the substrate along the parallel [0001]Fe2O3 and [100]TiO2 directions and nucleates dislocations along the orthogonal [1120]Fe2O3 [100]TiO2 directions.

Type
Articles
Copyright
Copyright © Materials Research Society 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Idriss, H., Legare, P. and Maire, G.: Dark and photoreactions of acetates on TiO2(110) single crystal surface. Surf. Sci. 515, 413 (2002).Google Scholar
2.Kawahara, T., Konishi, Y., Tada, H., Tohge, N., Nishii, J. and Ito, S.: A patterned TiO2(anatase)/TiO2(rutile) bilayer-type photocatalyst: Effect of the anatase/rutile junction on the photocatalytic activity. Angew. Chem. Int. Ed. Engl. 41, 2811 (2002).3.0.CO;2-#>CrossRefGoogle Scholar
3.Diebold, U.: The surface science of titanium dioxide. Surf. Sci. Rep. 48, 53 (2003).Google Scholar
4.Weiss, W. and Ranke, W.: Surface chemistry and catalysis on well-defined epitaxial iron-oxide layers. Prog. Surf. Sci. 70, 1 (2002).CrossRefGoogle Scholar
5.Dimoulas, A., Vellianitis, G., Mavrou, G., Apostolopoulos, G., Travlos, A., Wiemer, C., Fanciulli, M. and Rittersma, Z.M.: La2Hf2O7 high-kappa gate dielectric grown directly on Si(001) by molecular-beam epitaxy. Appl. Phys. Lett. 85, 3205 (2004).Google Scholar
6.Yamamoto, H., Aoki, K., Tsukada, A. and Naito, M.: Growth of Ba1−xKxBiO3 thin films by molecular beam epitaxy. Physica C 412–14, 192 (2004).CrossRefGoogle Scholar
7.Pearton, S.J., Heo, W.H., Ivill, M., Norton, D.P. and Steiner, T.: Dilute magnetic semiconducting oxides. Semicond. Sci. Tech. 19 R59 (2004).Google Scholar
8.Chambers, S.A. and Farrow, F.C.: MRS Bull. 28, 729 (2003).Google Scholar
9.Yoshimoto, M., Sasaki, A. and Akiba, S.: Nanoscale epitaxial growth control of oxide thin films by laser molecular beam epitaxy—Towards oxide nanoelectronics. Sci. Technol. Adv. Mat. 5, 527 (2004).CrossRefGoogle Scholar
10.Ohtomo, A. and Hwang, H.Y.: A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427, 423 (2004).Google Scholar
11.Koyama, T. and Chichibu, S.F.: Importance of lattice matching and surface arrangement for the helicon-wave-excited-plasma sputtering epitaxy of ZnO. J. Appl. Phys. 95, 7856 (2004).Google Scholar
12.Chambers, S.A.: Epitaxial growth and properties of thin film oxides. Surf. Sci. Rep. 39, 105 (2000).Google Scholar
13.Narayan, J., Tiwari, P., Chen, X., Singh, J., Chowdhury, R. and Zheleva, T.: Epitaxial-growth of TiN films on (100) silicon substrates by laser physical vapor-deposition. Appl. Phys. Lett. 61, 1290 (1992).CrossRefGoogle Scholar
14.Narayan, J. and Larson, B.C.: Domain epitaxy: A unified paradigm for thin film growth. J. Appl. Phys. 93, 278 (2003).CrossRefGoogle Scholar
15.Narayan, J., Dovidenko, K., Sharma, A. and Oktyabrksy, S.: Defects and interfaces in epitaxial ZnO/α–Al2O3 and AlN/ZnO/α–Al2O3 heterostuctures. J. Appl. Phys. 84, 2597 (1998).Google Scholar
16.Lyubinetsky, I., Thevuthasan, S., McCready, D.E. and Baer, D.R.: Formation of single-phase oxide nanoclusters: Cu2O on SrTiO3(100). J. Appl. Phys. 94, 7926 (2003).CrossRefGoogle Scholar