Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2025-01-01T06:55:13.301Z Has data issue: false hasContentIssue false

Hardness evolution of Al–Cr–N coatings under thermal load

Published online by Cambridge University Press:  31 January 2011

Herbert Willmann
Affiliation:
Materials Center Leoben, 8700 Leoben, Austria; and Thin Film Physics Division, Department of Physics (IFM), Linköping University, 58183 Linköping, Sweden
Paul H. Mayrhofer*
Affiliation:
Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700 Leoben, Austria
Lars Hultman
Affiliation:
Thin Film Physics Division, Department of Physics (IFM), Linköping University, 58183 Linköping, Sweden
Christian Mitterer
Affiliation:
Christian Doppler Laboratory for Advanced Hard Coatings at the Department of Physical Metallurgy and Materials Testing, Montanuniversität Leoben, 8700 Leoben, Austria
*
a)Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

Microstructure and hardness evolution of arc-evaporated single-phase cubic Al0.56Cr0.44N and Al0.68Cr0.32N coatings have been investigated after thermal treatment in Ar atmosphere. Based on a combination of differential scanning calorimetry and x-ray diffraction studies, we can conclude that Al0.56Cr0.44N undergoes only small structural changes without any decomposition for annealing temperatures Ta ⩽ 900 °C. Consequently, the hardness decreases only marginally from the as-deposited value of 30.0 ± 1.1 GPa to 29.4 ± 0.9 GPa with Ta increasing to 900 °C, respectively. The film with higher Al content (Al0.68Cr0.32N) exhibits formation of hexagonal (h) AlN at Ta ⩾ 700 °C, which occurs preferably at grain boundaries as identified by analytical transmission electron microscopy. Hence, the hardness increases from the as-deposited value of 30.1 ± 1.3 GPa to 31.6 ± 1.4 GPa with Ta = 725 °C. At higher temperatures, where the size and volume fraction of the h-AlN phase increases, the hardness decreases to 27.5 ± 1.0 GPa with Ta = 900 °C.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Vetter, J., Lugscheider, E., Guerreiro, S.S.: (Cr:Al)N coatings deposited by the cathodic vacuum arc evaporation. Surf. Coat. Technol. 98, 1233 1998CrossRefGoogle Scholar
2Ding, X.Z., Zeng, X.T.: Structural, mechanical and tribological properties of CrAlN coatings deposited by reactive unbalanced magnetron sputtering. Surf. Coat. Technol. 200, 1372 2005CrossRefGoogle Scholar
3Ide, Y., Nakamura, T., Kishitake, K.: Second International Conference on Processing Materials for Properties, edited by B. Mishra and C. Yamauchi The Minerals, Metals & Materials Society, San Francisco, CA 2000 291Google Scholar
4Hirai, M., Ueno, Y., Suzuki, T., Jiang, W.H., Grigoriu, C., Yatsui, K.: Characteristics of (Cr1−x, Alx)N films prepared by pulsed laser deposition. Jpn. J. Appl. Phys., Part 1 40, 1056 2001CrossRefGoogle Scholar
5Reiter, A.E., Derflinger, V.H., Hanselmann, B., Bachmann, T., Sartory, B.: Investigation of the properties of Al1−xCrxN coatings prepared by cathodic arc evaporation. Surf. Coat. Technol. 200, 2114 2005CrossRefGoogle Scholar
6Kawate, M., Kimura, A., Suzuki, T.: Microhardness and lattice parameter of Cr1−xAlxN films. J. Vac. Sci. Technol., A 20, 569 2002CrossRefGoogle Scholar
7Hasegawa, H., Suzuki, T.: Effects of second metal contents on microstructure and micro-hardness of ternary nitride films synthesized by cathodic arc method. Surf. Coat. Technol. 188, 234 2004CrossRefGoogle Scholar
8Kalss, W., Reiter, A., Derflinger, V., Gey, C., Endrino, J.L.: Modern coatings in high performance cutting applications. Int. J. Refract. Met. Hard Mater. 24, 399 2006CrossRefGoogle Scholar
9Banakh, O., Schmid, P.E., Sanjinés, R., Lévy, F.: High-temperature oxidation resistance of Cr1−xAlxN thin films deposited by reactive magnetron sputtering. Surf. Coat. Technol. 163, 57 2003CrossRefGoogle Scholar
10Kawate, M., Hashimoto, A.K., Suzuki, T.: Oxidation resistance of Cr1−XAlXN and Ti1−XAlXN films. Surf. Coat. Technol. 165, 163 2003CrossRefGoogle Scholar
11Mayrhofer, P.H., Mitterer, C., Hultman, L., Clemens, H.: Microstructural design of hard coatings. Prog. Mater. Sci. 51, 1032 2006CrossRefGoogle Scholar
12Hultman, L.: Thermal stability of nitride thin films. Vacuum 57, 1 2000CrossRefGoogle Scholar
13Sugishima, A., Kajioka, H., Makino, Y.: Phase transition of pseudobinary Cr–Al–N films deposited by magnetron sputtering method. Surf. Coat. Technol. 97, 590 1997CrossRefGoogle Scholar
14Makino, Y., Nogi, K.: Synthesis of pseudobinary Cr–Al–N films with B1 structure by rf-assisted magnetron sputtering method. Surf. Coat. Technol. 98, 1008 1998CrossRefGoogle Scholar
15Kimura, A., Kawate, M., Hasegawa, H., Suzuki, T.: Anisotropic lattice expansion and shrinkage of hexagonal TiAlN and CrAlN films. Surf. Coat. Technol. 169, 367 2003CrossRefGoogle Scholar
16Mayrhofer, P.H., Willmann, H., Reiter, A.: Structure and phase evolution of Cr–Al–N coatings during annealing. Surf. Coat. Technol. 202, 4935 2008CrossRefGoogle Scholar
17Mayrhofer, P.H., Music, D., Reeswinkel, Th., Fuß, H-G., Schneider, J.M.: Structure, elastic properties and phase stability of Cr1−xAlxN. Acta Mater. 56, 2469 2008CrossRefGoogle Scholar
18Zhang, R.F., Veprek, S.: Phase stabilities and spinodal decomposition in the Cr1−xAlxN system studied by ab initio LDA and thermodynamic modeling: Comparison with the Ti1−xAlxN and TiN/Si3N4 systems. Acta Mater. 55, 4615 2007CrossRefGoogle Scholar
19Willmann, H., Mayrhofer, P.H., Persson, P.O.Å., Reiter, A.E., Hultman, L., Mitterer, C.: Thermal stability of Al−Cr−N hard coatings. Scr. Mater. 54, 1847 2006CrossRefGoogle Scholar
20Mayrhofer, P.H., Hörling, A., Karlsson, L., Sjolén, J., Larsson, T., Mitterer, C., Hultman, L.: Self-organized nanostructures in the Ti–Al–N system. Appl. Phys. Lett. 83, 2049 2003CrossRefGoogle Scholar
21Mayrhofer, P.H., Stoiber, M., Mitterer, C.: Age hardening of PACVD TiBN thin films. Scr. Mater. 53, 241 2005CrossRefGoogle Scholar
22Argon, A.S., Yip, S.: The strongest size. Philos. Mag. Lett. 86, 713 2006CrossRefGoogle Scholar
23Mayer, M.: Simnra User’s Guide,, Max-Planck-Institut für Plasmaphysik, Technical Report 9 1997 113Google Scholar
24Zhang, Y.W., Whitlow, H.J., Winzell, T., Bubb, I.F., Sajavaara, T., Arstila, K., Keinonen, J.: Detection efficiency of time-of-flight energy elastic recoil detection analysis systems. Nucl. Instrum. Methods Phys. Res., Sect. B 149, 477 1999CrossRefGoogle Scholar
25Janson, M.S.: CONTES Instruction Manual, Internal Report Uppsala University, Sweden 2004Google Scholar
26Oliver, W.C., Pharr, G.M.: Improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 1992CrossRefGoogle Scholar
27Greenwood, N.N., Earnshaw, A.: Chemistry of the Elements, 2nd ed.Butterworth-Heinemann, Oxford 1997Google Scholar
28Mayrhofer, P.H., Willmann, H., Hultman, L., Mitterer, C.: Influence of different atmospheres on the thermal decomposition of Al–Cr–N coatings. J. Phys. D: Appl. Phys. 41, 155316 2008CrossRefGoogle Scholar
29JCPDS No. 25-1133 (h-AlN). International Center for Diffraction Data Swarthmore, CA 2001Google Scholar