Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-28T05:58:50.215Z Has data issue: false hasContentIssue false

Growth of width-controlled nanowires MnO2 from mesoporous carbon and investigation of their properties

Published online by Cambridge University Press:  03 March 2011

Shenmin Zhu*
Affiliation:
State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
Xiaolin Wang
Affiliation:
Spintronic and Electronic Materials Group, Institute for Superconducting and Electronic Materials, University of Wollongong, New South Wales 2522, Australia
Wei Huang
Affiliation:
Coll. Chem. & Chem. Eng., State Key Lab Met Matrix Composites, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
Deyue Yan
Affiliation:
Coll. Chem. & Chem. Eng., State Key Lab Met Matrix Composites, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
Honghua Wang
Affiliation:
Coll. Chem. & Chem. Eng., State Key Lab Met Matrix Composites, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
Di Zhang
Affiliation:
Coll. Chem. & Chem. Eng., State Key Lab Met Matrix Composites, Shanghai Jiao Tong University, Shanghai 200030, People’s Republic of China
*
a) Address all correspondence to this author. e-mail: [email protected]
Get access

Abstract

One-dimensional α-MnO2 nanowires with a controlled width of 10–20 nm have been developed by means of ultrasonic waves from mesoporous carbon using KMnO4 as the precursor. The formation mechanism has been proposed based on the results. A peak around 100 K was detected in the temperature-dependence of magnetization curve, indicating the ferromagnetic state in nanocomposite mesoporous carbon-MnO2, which is in agreement with the transition temperature found from the magnetization versus applied magnetic field curve. The magnetization versus temperature curve of the obtained MnO2 nanowires showed a magnetic transition at about 50 K, illustrating that a parasitic ferromagnetic component is composed on the antiferromagnetic structure of MnO2. The advantage of the method reported here is that phase-controlled synthesis of α-MnO2 nanowires was implemented regardless of pH, temperature, and types of ions in the reaction system. A major advantage of this approach is the efficient, fast, and reproducible control of width and the facile strategy to synthesize nanowires MnO2, in addition to the high purity of the resultant material.

Type
Articles
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Tian, Z., Tong, W., Wang, J., Duan, N., Krishnan, V.V., Suib, S.L.: Manganese oxide mesoporous structures: Mixed-valent semiconducting catalysts. Science 276, 926 (2002).CrossRefGoogle Scholar
2.Perner, A., Holl, K., Ilic, D., Wohlfahrt-Mehrens, M.: A new MnOx cathode material for rechargeable lithium batteries. Eur. J. Inorg. Chem. 5, 1108 (2002).3.0.CO;2-0>CrossRefGoogle Scholar
3.Chitrakar, R., Kanoh, H., Kim, Y.S., Miyai, Y., Ooi, K.: Synthesis of layered-type hydrous manganese oxides from monoclinic-type LiMnO2. J. Solid State Chem. 160, 69 (2001).Google Scholar
4.Yang, J-B., Zhou, X-D., James, W-J., Malik, S-K., Wang, C-S.: Growth and magnetic properties of MnO2-δ nanowire microspheres. Appl. Phys. Lett. 85, 3160 (2004).CrossRefGoogle Scholar
5.Pan, Z-W., Dai, Z-R., Wang, Z-L.: Nanobelts of semiconducting oxides. Science 291, 1947 (2001).CrossRefGoogle ScholarPubMed
6.Govindaraj, A., Satishkumar, B.C., Nath, M., Rao, C.N-R.: Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem. Mater. 12, 202 (2000).CrossRefGoogle Scholar
7.Sloan, J., Wright, D.M., Woo, H.G., Bailey, S., York, A.P.E., Coleman, K.S., Green, M.L.H., Wright, D.M., Hutchison, J.L., Woo, H-G.: Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem. Commun. 8, 699 (1999).CrossRefGoogle Scholar
8.Lieber, C.M.: One-dimensional nanostructures: Chemistry, physics and applications. Solid State Commun. 107, 607 (1998).CrossRefGoogle Scholar
9.Urban, J.J., Yun, W.S., Gu, Q., Park, H.K.: Synthesis of single-crystalline perovskite nanorods composed of barium titanate and strontium titanate. J. Am. Chem. Soc. 124, 1186 (2002).CrossRefGoogle ScholarPubMed
10.Li, M., Schnablegger, H., Mann, S.: Coupled synthesis and self-assembly of nanoparticles to give structures with controlled organization. Nature 402, 393 (1999).CrossRefGoogle Scholar
11.Duan, X-F., Huang, Y., Cui, Y., Wang, J-F., Lieber, C-M.: Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices. Nature 409, 66 (2001).Google Scholar
12.Wang, X., Li, Y.: Synthesis and formation mechanism of manganese dioxide nanowires/nanorods. Chem. -Eur. J. 9, 300 (2003).CrossRefGoogle ScholarPubMed
13.Han, Y-J., Kim, J.M., Stucky, G.D.: Preparation of noble metal nanowires using hexagonal mesoporous silica SBA-15. Chem. Mater. 12, 2068 (2000).Google Scholar
14.Gao, F., Lu, Q., Zhao, D.: Synthesis of crystalline mesoporous CdS semiconductor nanoarrays through a mesoporous SBA-15 silica template technique. Adv. Mater. 15, 739 (2003).Google Scholar
15.Janssen, A.H., Yang, C-M., Wang, Y., Schüth, F., Koster, A.J., Jong, K.P.: Localization of small metal (oxide) particles in SBA-15 using bright-field electron tomography. J. Phys. Chem. B 107, 10552 (2003).Google Scholar
16.Tian, B., Liu, X., Yang, H., Xie, S., Yu, C., Tu, B., Zhao, D.: General synthesis of ordered crystallized metal oxide nanoarrays replicated by microwave-digested mesoporous silica. Adv. Mater. 15, 1370 (2003).CrossRefGoogle Scholar
17.Yang, H., Shi, Q., Tian, B., Lu, Q., Gao, F., Xie, S., Fan, J., Yu, C., Tu, B., Zhao, D.: One-step nanocasting synthesis of highly ordered single crystalline indium oxide nanowire arrays from mesostructured frameworks. J. Am. Chem. Soc. 125, 4724 (2003).CrossRefGoogle ScholarPubMed
18.Wei, M., Konishi, Y., Zhou, H., Sugihara, H., Arakawa, H.: Synthesis of single-crystal manganese dioxide nanowires by a soft chemical process. Nanotechnology 16, 245 (2005).CrossRefGoogle ScholarPubMed
19.Dong, A., Ren, N., Tang, Y., Wang, Y., Zhang, Y., Hua, W., Gao, Z.: General synthesis of mesoporous spheres of metal oxides and phosphates. J. Am. Chem. Soc. 125, 4976 (2003).CrossRefGoogle ScholarPubMed
20.Li, W., Lu, A., Weidenthaler, C., Goddard, R., Bongard, H-J., Schüth, F.: Growth of single crystal-Al2O3 nanofibers on a carbon aerogel substrate. J. Mater. Chem. 15, 2993 (2005).CrossRefGoogle Scholar
21.Dibandjo, P., Chassagneux, F., Bois, L., Sigala, C., Miele, P.: Comparison between SBA-15 silica and CMK-3 carbon nanocasting for mesoporous boron nitride synthesis. J. Mater. Chem. 15, 1917 (2005).CrossRefGoogle Scholar
22.Li, W., Lu, A., Weidenthaler, C., Schuth, F.: Hard-templating pathway to create mesoporous magnesium oxide. Chem. Mater. 16, 5676 (2004).CrossRefGoogle Scholar
23.Imperor-Clerc, M., Bazin, D., Appay, M-D., Beaunier, P., Davidson, A.: Crystallization of β-MnO2 nanowires in the pores of SBA-15 silicas: In situ investigation using synchrotron radiation. Chem. Mater. 16, 1813 (2004).CrossRefGoogle Scholar
24.Zhu, S., Zhou, H., Hibino, M., Honma, I., Ichihara, M.: Synthesis of MnO2 nanoparticles confined in ordered mesoporous carbon using a sonochemical method. Adv. Funct. Mater. 15, 381 (2005).CrossRefGoogle Scholar
25.Kruk, M., Jaroniec, M., Ko, C-H., Ryoo, R.: Characterization of the porous structure of SBA-15. Chem. Mater. 12, 196 (2000).CrossRefGoogle Scholar
26.Joo, S-H., Choi, S-J., Oh, I., Kwak, J., Liu, Z., Terasaki, Q., Ryoo, R.: Ordered nanoporous arrays of carbon supporting high dispersions of platinum nanoparticles. Nature 412, 169 (2001).CrossRefGoogle ScholarPubMed
27.Xiao, T-D., Strutt, P.R., Benaiss, M., Chen, H., Kear, B.H.: Synthesis of high active-site density nanofibrous MnO2-base materials with enhanced permeabilities. Nanostruct. Mater. 10, 1051 (1998).CrossRefGoogle Scholar
28.Liu, Z., Sakamoto, Y., Ohsuna, T., Hiraga, K., Terasaki, O., Ko, C-H., Shin, H.J., Ryoo, R.: TEM studies of platinum nanowires fabricated in mesoporous silica MCM-41. Angew. Chem., Int. Ed. 39, 3107 (2000).3.0.CO;2-J>CrossRefGoogle ScholarPubMed