Hostname: page-component-586b7cd67f-rcrh6 Total loading time: 0 Render date: 2024-11-25T02:45:36.209Z Has data issue: false hasContentIssue false

Growth of nanotubes in sol-gel-derived V2O5 powders and films prepared under acidic conditions

Published online by Cambridge University Press:  31 January 2011

S. Dirè
Affiliation:
Dipartimento di Ingegneria dei Materiali e Tecnologie Industriali, Università di Trento, 38050 Trento, Italy
E. Cazzanelli
Affiliation:
Liquid Crystal Laboratory–Centro Nazionale della Ricerche–Istituto Nazionale Fisica della Materia (LICRYL CNR-INFM) and Centro di Eccellenza dell' Università della Calabria (CEMIF.CAL), Dipartimento di Fisica, Università della Calabria, 87036 Arcavacata di Rende (Cosenza), Italy
Get access

Abstract

The structural evolution with temperature of some V2O5 gels and thin films is presented, and the role of the hydrolysis conditions is investigated. Several techniques, i.e., x-ray diffraction, differential thermal analysis, infrared, and temperature-dependent Raman spectroscopy, have been used to follow the thermal behavior of the samples. When the bulk xerogels begin to change from a nanocrystalline phase to the orthorhombic α-V2O5, in the temperature range 280 to 300 °C, a growth of vanadium oxide nanotubes also occurs, while at higher temperatures the crystallization into the α phase prevails. A slightly different evolution is observed for heat treated thin films, which show a structure containing polyvanadate chains near room temperature. They also present a growth of nanotubes for intermediate temperatures and a complete crystallization into the α phase when the temperature is further increased.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Legrouri, A., Baird, T., Fryer, J.R.: Electron optical studies of fresh and reduced vanadium pentoxide-supported rhodium catalysts. J. Catal. 140, 173 (1993)Google Scholar
2.Swider-Lyons, K.E., Love, C.T., Rolison, D.R.: Improved lithium capacity of defective V2O5 materials. Solid State Ionics 152–153, 99 (2002)CrossRefGoogle Scholar
3.Ceccato, R., Carturan, G., Decker, F., Artuso, F.: Sol-gel synthesis of vanadate-based thin films as counter electrodes in electrochromic devices. J. Sol-Gel Sci. Technol. 26, 1071 (2003)Google Scholar
4.Bruno, V., Cazzanelli, E., Scaramuzza, N., Strangi, G., Ceccato, R., Carturan, G.: Electrical and electro-optical investigations of liquid crystal cells containing TiO2–V2O5 thin films prepared by sol-gel synthesis. J. Appl. Phys. 92, 5340 (2002)Google Scholar
5.Bruno, V., Castriota, M., Marino, S., Versace, C., Strangi, G., Cazzanelli, E., Scaramuzza, N.: Asymmetric response to electric field in nematic liquid crystal cells containing vanadium oxide thin films prepared by sol-gel synthesis. Mol. Cryst. Liq. Cryst. 441, 27 (2005)CrossRefGoogle Scholar
6.Liu, P., Lee, S-H., Tracy, C.E., Turner, J.A., Pitts, J.R., Deb, S.K.: Electrochromic and chemochromic performance of mesoporous thin-film vanadium oxide. Solid State Ionics 165, 223 (2003)CrossRefGoogle Scholar
7.Manning, T.D., Parkin, I.P., Clark, R.J.H., Sheel, D., Pemble, M.E., Vernadou, D.: Intelligent window coatings: Atmospheric pressure chemical vapour deposition of vanadium oxides. J. Mater. Chem. 12, 2936 (2002)CrossRefGoogle Scholar
8.Cazzanelli, E., Mariotto, G., Passerini, S., Smyrl, W.H., Gorenstein, A.: Raman and XPS characterization of vanadium oxide thin films deposited by reactive RF sputtering. Sol. Energy Mater. Sol. Cells 56, 249 (1999)CrossRefGoogle Scholar
9.Livage, J.: Vanadium pentoxide gels. Chem. Mater. 3, 578 (1991)CrossRefGoogle Scholar
10.Castriota, M., Epervrier, N., Barone, T., De Santo, G., Cazzanelli, E.: Evolution from vanadium pentoxide xerogel to sodium-containing vanadates in thin films on ITO-coated glasses. Ionics 13, 205 (2007)CrossRefGoogle Scholar
11.Watanabe, T., Ikeda, Y., Ono, T., Hibino, M., Hosoda, M., Sakai, K., Kudo, T.: Characterization of vanadium oxide sol as a starting material for high rate intercalation cathodes. Solid State Ionics 151, 313 (2002)CrossRefGoogle Scholar
12.Livage, J.: Optical and electrical properties of vanadium oxides synthesized from alkoxides. Coord. Chem. Rev. 190–192, 391 (1999)CrossRefGoogle Scholar
13.Pinna, N., Wild, U., Urban, J., Schlogl, R.: Divanadium pentoxide nanorods. Adv. Mater. 15, 329 (2003)CrossRefGoogle Scholar
14.Pinna, N., Willinger, M., Weiss, K., Urban, J., Schlogl, R.: Local structure of nanoscopic materials: V2O5 nanorods and nanowires. Nano Lett. 3, 1131 (2003)CrossRefGoogle Scholar
15.Liu, A., Ichihara, M., Honma, I., Zhou, H.: Vanadium-oxide nanotubes: Synthesis and template-related electrochemical properties. Electrochem. Commun. 9, 1766 (2007)CrossRefGoogle Scholar
16.Wang, Y., Takahashi, K., Lee, K., Cao, G.: Nanostructured vanadium oxide electrodes for enhanced lithium-ion intercalation. Adv. Funct. Mater. 16, 1133 (2006)Google Scholar
17.Lavayen, V., O'Dwyer, C., Santa Ana, M.A., Newcomb, S.B., Benavente, E., González, G., Sotomayor Torres, C.M.: Comparative structural-vibrational study of nano-urchin and nanorods of vanadium oxide. Phys. Status Solidi B 243, 3285 (2006)CrossRefGoogle Scholar
18.Satishkumar, B.C., Govindaraj, A., Nath, M., Rao, C.N.R.: Synthesis of metal oxide nanorods using carbon nanotubes as templates. J. Mater. Chem. 10, 2115 (2000)Google Scholar
19.Malta, M., Louarn, G., Errien, N., Torresi, R.M.: Redox behavior of nanohybrid material with defined morphology: Vanadium oxide nanotubes intercalated with polyaniline. J. Power Sources 156, 533 (2006)Google Scholar
20.Chen, W., Mai, L., Qi, Y., Dai, Y.: One-dimensional nanomaterials of vanadium and molybdenum oxides. J. Phys. Chem. Solids 67, 896 (2006)CrossRefGoogle Scholar
21.Liu, X., Huang, C., Qiu, J., Wang, Y.: The effect of thermal annealing and laser irradiation on the microstructure of vanadium oxide nanotubes. Appl. Surf. Sci. 253, 2747 (2006)CrossRefGoogle Scholar
22.Zhou, F., Zhao, X., Yuan, C., Li, L.: Vanadium pentoxide nanowires: Hydrothermal synthesis, formation mechanism, and phase control parameters. Cryst. Growth Des. 8, 723 (2008)CrossRefGoogle Scholar
23.Fateh, N., Fontalvo, G.A., Mitterer, C.: Structural and mechanical properties of dc and pulsed dc reactive magnetron sputtered V2O5 films. J. Phys. D: Appl. Phys. 40, 7716 (2007)Google Scholar
24.Ponzio, E.A., Benedetti, T.M., Torresi, R.M.: Electrochemical and morphological stabilization of V2O5 nanofibers by the addition of polyaniline. Electrochim. Acta 52, 4419 (2007)Google Scholar
25.Souza Filho, A.G., Ferreira, O.P., Santos, E.J.G., Mendes Filho, J., Alves, O.L.: Raman spectra in vanadate nanotubes revisited. Nano Lett. 4, 2099 (2004)CrossRefGoogle Scholar
26.Livage, J.: Sol-gel chemistry and electrochemical properties of vanadium oxide gels. Solid State Ionics 86–88, 935 (1996)CrossRefGoogle Scholar
27.Cerc Korosec, R., Bukovec, P., Pihlar, B., Padeznik Gomilsek, J.: The role of thermal analysis in optimization of the electrochromic effect of nickel oxide thin films, prepared by the sol-gel method. Part I. Thermochim. Acta 402, 57 (2003)CrossRefGoogle Scholar
28.Adelbert, P., Baffier, N., Gharbi, N., Livage, J.: Layered structure of vanadium pentoxide gels. Mater. Res. Bull. 16, 669 (1981)Google Scholar
29.Honma, K., Yoshinaka, M., Hirota, K., Yamaguchi, O., Asai, J., Makiyama, Y.: Fabrication, microstructure and electrical conductivity of V2O5 ceramics. Mater. Res. Bull. 31, 531 (1996)Google Scholar
30.Abello, L., Husson, E., Repelin, Y., Lucazeau, G.: Vibrational spectra and valence force field of crystalline V2O5. Spectrochim. Acta [A] 39, 641 (1983)CrossRefGoogle Scholar
31.Botto, I.L., Vassallo, M.B., Baran, E.J., Minelli, G.: IR spectra of VO2 and V2O3. Mater. Chem. Phys. 50, 267 (1997)Google Scholar
32.Zhang, X., Frech, R.: Vibrational spectroscopic study of lithium vanadium pentoxides. Electrochim. Acta 42, 475 (1997)CrossRefGoogle Scholar
33.Zheng, C., Zhang, X., Qiao, Z., Lei, D.: Preparation and characterization of nanocrystal V2O5. J. Solid State Chem. 159, 181 (2001)CrossRefGoogle Scholar
34.Repelin, Y., Husson, E., Abello, L., Lucazeau, G.: Structural study of gels of V2O5: Normal coordinate analysis. Spectrochim. Acta [A] 41, 1003 (1985)Google Scholar
35.Lee, S.H., Cheong, H.M., Seong, M.J., Liu, P., Tracy, E., Mascarenhas, A., Pitts, J.R., Deb, S.K.: Microstructure study of amorphous vanadium oxide thin films using Raman spectroscopy. J. Appl. Phys. 92, 1893 (2002)CrossRefGoogle Scholar
36.Julien, C., Guesdon, J.P., Gorenstein, A., Khelfa, A., Ivanov, I.: The influence of the substrate material on the growth of V2O5 flash-evaporated films. Appl. Surf. Sci. 90, 389 (1995)CrossRefGoogle Scholar
37.Baddour-Hadjean, R., Golabkan, V., Pereira-Ramos, J.P., Mantoux, A., Lincot, D.: A Raman study of the lithium insertion process in vanadium pentoxide thin films deposited by atomic layer deposition. J. Raman Spectrosc. 33, 631 (2002)CrossRefGoogle Scholar
38.Advances in Infrared and Raman Spectroscopy edited by R.J.H. Clark and R.E. Hester Vol. 6 (Heyden London 1980)Google Scholar
39.Pine, A.S., Tannenwald, P.E.: Temperature dependence of Raman linewidth and shift in α-quartz. Phys. Rev. 178, 1424 (1969)CrossRefGoogle Scholar
40.Went, G.T., Oyama, S.T., Bell, A.T.: Laser Raman spectroscopy of supported vanadium oxide catalysts. J. Phys. Chem. 94, 4240 (1990)CrossRefGoogle Scholar
41.Cazzanelli, E., Capoleoni, S., Papalino, L.: Space variation on the crystallization kinetics in pure and mixed oxide films: A micro-Raman determination. Philos. Mag. B. 82, 453 (2002)CrossRefGoogle Scholar